login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k for which A242720(k) = (prime(k)+1)^2 + 2.
6

%I #22 Sep 08 2019 15:20:33

%S 3,35,41,52,57,81,104,209,215,343,373,398,473,477,584,628,768,774,828,

%T 872,1117,1145,1189,1287,1324,1435,1615,1634,1653,1704,1886,1925,2070,

%U 2075,2123,2171,2193,2425,2449,2605,2633,2934,2948,3019,3194,3273,3533,3552,3685,3758

%N Numbers k for which A242720(k) = (prime(k)+1)^2 + 2.

%C By a comment in A246748, A242720(k) >= (prime(k)+1)^2 + 2, and equality is attained in this sequence.

%C Prime(a(n)) >= 5 and is in the intersection of A001359 and A157468.

%H Chai Wah Wu, <a href="/A246824/b246824.txt">Table of n, a(n) for n = 1..10000</a>

%t lpf[n_] := FactorInteger[n][[1, 1]]; aQ[n_] := Module[{k=6}, While[PrimeQ[k-3] && PrimeQ[k-1] || lpf[k-1]<=lpf[k-3] || lpf[k-3]<Prime[n], k+=2]; k == (Prime[n]+1)^2 + 2]; Select[Range[50], aQ] (* _Amiram Eldar_, Dec 10 2018 *)

%o (PARI) lpf(k) = factorint(k)[1, 1];

%o f(n) = my(k=6); while((isprime(k-3) && isprime(k-1)) || lpf(k-1)<=lpf(k-3) || lpf(k-3)<prime(n), k+=2); k; \\ A242720

%o isok(n) = f(n) == (prime(n)+1)^2 + 2; \\ _Michel Marcus_, Dec 10 2018

%o (Python)

%o from sympy import prime, isprime, factorint

%o A246824_list = [a for a, b in ((n, prime(n)+1) for n in range(3,10**3)) if (not (isprime(b**2-1) and isprime(b**2+1)) and (min(factorint(b**2+1)) > min(factorint(b**2-1)) >= b-1))] # _Chai Wah Wu_, Jun 03 2019

%Y Cf. A001359, A157468, A242719, A242720, A246748, A246819, A246821.

%K nonn

%O 1,1

%A _Vladimir Shevelev_, Sep 04 2014

%E a(40)-a(50) from b-file by _Robert Price_, Sep 08 2019