login
Nonnegative numbers k such that x^5 - x^4 + k is reducible.
0

%I #11 Jan 04 2022 21:57:53

%S 0,2,9,48,324,1280,3750,9072,19208,36864,50625,65610,82944,110000,

%T 175692,269568,399854,576240,810000,1114112,1503378,1994544,2606420,

%U 3360000,4278582,5387888,6716184,8294400

%N Nonnegative numbers k such that x^5 - x^4 + k is reducible.

%C Next term > 10^7.

%e For k=2, x^5 - x^4 + 2 is reducible: x^5 - x^4 + 2 = (x+1) * (x^4 - 2*x^3 + 2*x^2 - 2*x + 2).

%t Select[Range[0,83*10^5],!IrreduciblePolynomialQ[x^5-x^4+#]&] (* _Harvey P. Dale_, Dec 11 2017 *)

%o (PARI) for(n=0, 10^7, if( !polisirreducible(x^5-x^4+n), print1(n,", "))); \\ _Joerg Arndt_, Sep 06 2014

%K nonn

%O 1,2

%A _M. Lawrence Glasser_, Sep 02 2014

%E More terms from _Joerg Arndt_, Sep 06 2014