%I #6 Sep 03 2022 22:38:07
%S 3876,15960,66378,276762,1152576,4791012,19906740,82727094,343911336,
%T 1430080296,5946396012,24722787264,102780120750,427285990662,
%U 1776417823830,7385542897866,30705819911322,127659940718424
%N Number of length n+4 0..6 arrays with no pair in any consecutive five terms totalling exactly 6.
%C Column 6 of A246737.
%H R. H. Hardin, <a href="/A246735/b246735.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 3*a(n-1) +a(n-2) +a(n-3) +5*a(n-4) +202*a(n-5) +94*a(n-6) +129*a(n-7) +278*a(n-8) +35*a(n-9) -197*a(n-10) -164*a(n-11) +272*a(n-12) +119*a(n-13) -9*a(n-14) +17*a(n-15) +158*a(n-16) +27*a(n-17) -19*a(n-18) -18*a(n-19) -a(n-20) -2*a(n-21) +2*a(n-22) +a(n-23).
%e Some solutions for n=3
%e ..5....2....3....0....3....2....3....6....4....4....5....2....0....4....2....0
%e ..2....0....0....1....6....0....6....4....0....3....5....0....5....5....3....0
%e ..2....2....5....0....1....1....6....1....5....4....2....1....0....6....5....4
%e ..5....0....5....1....1....3....5....4....5....1....2....1....2....5....2....5
%e ..2....0....0....4....6....2....2....6....3....1....0....3....0....5....2....3
%e ..2....2....4....1....3....2....3....1....0....4....2....4....0....6....0....0
%e ..2....5....0....3....2....2....2....4....0....1....5....0....3....2....3....4
%Y Cf. A246737.
%K nonn
%O 1,1
%A _R. H. Hardin_, Sep 02 2014