Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Sep 08 2022 08:46:09
%S 1,2,0,0,9,2,4,5,9,5,10,35,21,12,14,45,19,38,36,20,54,54,19,10,83,40,
%T 101,4,20,8,16,18,53,127,25,139,4,54,149,127,176,156,71,17,65,196,10,
%U 211,221,205,63,138,137,234,254,194,67,243,155,145,164,203,76,187,272
%N Catalan(n) mod prime(n).
%C Since prime(n) > 2*n for n > 4, the only occurrences of 0 are at n = 3 and 4. Are there any occurrences of 1 after n = 1? - _Robert Israel_, Sep 02 2014
%C a(n) = 1 for n = 1, 1161, 15792. - _Jens Kruse Andersen_, Sep 02 2014
%H Jens Kruse Andersen, <a href="/A246714/b246714.txt">Table of n, a(n) for n = 1..10000</a>
%p seq(binomial(2*n,n)/(n+1) mod ithprime(n), n=1..100); # _Robert Israel_, Sep 02 2014
%t Table[Mod[CatalanNumber[n], Prime[n]], {n, 65}] (* _Alonso del Arte_, Sep 02 2014 *)
%o (Magma) [Catalan(n) mod NthPrime(n): n in [1..70]];
%o (Python)
%o from sympy import prime
%o from gmpy2 import divexact, t_mod
%o A246714, c = [1], 1
%o for n in range(2,10**3):
%o ....c = divexact(c*(4*n-2),(n+1))
%o ....A246714.append(t_mod(c,prime(n))) # _Chai Wah Wu_, Sep 04 2014
%Y Cf. A000040, A000108.
%K nonn
%O 1,2
%A _Vincenzo Librandi_, Sep 02 2014