login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle in which n-th row lists lexicographically ordered increasing lists of parts of all partitions of n into distinct parts.
20

%I #20 Oct 21 2022 06:37:48

%S 1,2,1,2,3,1,3,4,1,4,2,3,5,1,2,3,1,5,2,4,6,1,2,4,1,6,2,5,3,4,7,1,2,5,

%T 1,3,4,1,7,2,6,3,5,8,1,2,6,1,3,5,1,8,2,3,4,2,7,3,6,4,5,9,1,2,3,4,1,2,

%U 7,1,3,6,1,4,5,1,9,2,3,5,2,8,3,7,4,6,10

%N Triangle in which n-th row lists lexicographically ordered increasing lists of parts of all partitions of n into distinct parts.

%H Alois P. Heinz, <a href="/A246688/b246688.txt">Rows n = 1..32, flattened</a>

%e Triangle begins:

%e [1];

%e [2];

%e [1,2], [3];

%e [1,3], [4];

%e [1,4], [2,3], [5];

%e [1,2,3], [1,5], [2,4], [6];

%e [1,2,4], [1,6], [2,5], [3,4], [7];

%e [1,2,5], [1,3,4], [1,7], [2,6], [3,5], [8];

%e [1,2,6], [1,3,5], [1,8], [2,3,4], [2,7], [3,6], [4,5], [9];

%e [1,2,3,4], [1,2,7], [1,3,6], [1,4,5], [1,9], [2,3,5], [2,8], [3,7], [4,6], [10];

%p b:= proc(n, i) b(n, i):= `if`(n=0, [[]], `if`(i>n, [],

%p [map(x->[i, x[]], b(n-i, i+1))[], b(n, i+1)[]]))

%p end:

%p T:= n-> map(x-> x[], b(n, 1))[]:

%p seq(T(n), n=1..12);

%t T[n_] := Module[{ip, lg}, ip = Reverse /@ Select[ IntegerPartitions[n], # == DeleteDuplicates[#]&]; lg = Length /@ ip // Max; SortBy[PadRight[#, lg]&][ip]];

%t Table[T[n], {n, 1, 12}] // Flatten (* _Jean-François Alcover_, Oct 21 2022 *)

%Y Row lengths are A015723.

%Y Row sums give A066189.

%Y Last elements of rows are A000027.

%Y Cf. A026791, A026793, A118457, A265146.

%K nonn,tabf

%O 1,2

%A _Alois P. Heinz_, Sep 01 2014