Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #114 Sep 17 2024 12:33:58
%S 2,3,4,5,7,8,9,11,13,16,17,19,23,25,27,29,31,32,37,41,43,47,49,53,59,
%T 61,64,67,71,73,79,81,83,89,97,101,103,107,109,113,121,125,127,128,
%U 131,137,139,149,151,157,163,167,169,173,179,181,191,193,197,199,211
%N Prime powers: numbers of the form p^k where p is a prime and k >= 1.
%C The elements are called prime powers in contrast to the powers of primes which are the numbers of the same form but with k >= 0, cf. A000961.
%C Every nonzero integer is the product of elements of this sequence which are relatively prime and an element of {-1, 1}. This product is up to a rearrangement of the factors unique. (This statement is the fundamental theorem of arithmetic.)
%C These numbers are the numbers such that the von Mangoldt function is nonzero.
%C These numbers are the numbers of elements in finite fields. - _Franz Vrabec_, Aug 11 2004
%C A positive integer n is a prime power if and only if nZ is a primary ideal of Z. - _John Cremona_, Sep 02 2014
%C Also, numbers n divisible by their cototients A051953(n). - _Ivan Neretin_, May 29 2016
%C Numbers n such that (theta_3(q) - theta_3(q^n)) / 2 is the g.f. of a multiplicative sequence. - _Michael Somos_, Oct 17 2016
%C Numbers that are evenly divisible by exactly one prime number. - _Lee A. Newberg_, May 07 2018
%C Ram proved that these are precisely the numbers n such that the binomial coefficients n!/(m!(n-m)!) for m = 1..n-1 have a common factor greater than 1 (which is the unique prime dividing n). See Joris, Oestreicher & Steinig for a generalization. - _Charles R Greathouse IV_, Apr 24 2019
%C Blagojević & Ziegler prove that for these n and for any convex polygon in the plane, the polygon can be partitioned into n polygons with equal area and equal perimeter. The result is conjectured (by Nandakumar & Rao, who proved the case n = 2) to hold for all n. - _Charles R Greathouse IV_, Apr 24 2019
%C Numbers n such that A367064(n) < 0. - _Chai Wah Wu_, Nov 06 2023
%H Robert Israel, <a href="/A246655/b246655.txt">Table of n, a(n) for n = 1..10000</a>
%H Brady Haran and Günter Ziegler, <a href="https://www.youtube.com/watch?v=5SfXqTENV_Q">Cannons and Sparrows</a>, Numberphile video (2018)
%H H. Joris, C. Oestreicher and J. Steinig, <a href="https://doi.org/10.1016/0022-314X(85)90013-7">The greatest common divisor of certain sets of binomial coefficients</a>, Journal of Number Theory 21 (1985), pp. 101-119.
%H Pavle V. M. Blagojević and Günter M. Ziegler, <a href="https://arxiv.org/abs/1202.5504">Convex equipartitions via equivariant obstruction theory</a>, arXiv:1202.5504 [math.AT], 2012-2013; Israel Journal of Mathematics 200:1 (June 2014), pp 49-77.
%H Hans Montanus and Ron Westdijk, <a href="https://greenbluemath.nl/wp-content/uploads/2024/03/Cellular-Automation-and-Binomials.pdf">Cellular Automation and Binomials</a>, Green Blue Mathematics (2022), p. 90.
%H Laurentiu Panaitopol, <a href="http://dx.doi.org/10.1216/rmjm/1021249445">Some of the properties of the sequence of powers of prime numbers</a>, Rocky Mountain Journal of Mathematics, Volume 31, Number 4, Winter 2001.
%H Balak Ram, <a href="https://babel.hathitrust.org/cgi/pt?id=njp.32101080760422;view=1up;seq=51">Common factors of n!/(m!(n-m)!), (m = 1, 2, ... n-1)</a>, Journal of the Indian Mathematical Club (Madras) 1 (1909), pp. 39-43.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PrimePower.html">Prime Power</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ProjectivePlane.html">Projective Plane</a>
%H Chai Wah Wu, <a href="https://arxiv.org/abs/2409.05844">Algorithms for complementary sequences</a>, arXiv:2409.05844 [math.NT], 2024.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Prime_power">Prime power</a>
%H <a href="/index/Cor#core">Index entries for "core" sequences</a>
%F a(n) is characterized by A001221(a(n)) = 1.
%F a(n) is characterized by A014963(a(n)) != 1.
%F Euler's A000010(a(n)) = a(n)*(1 - 1/A014963(a(n))).
%F All three relations above are not true for A000961(n) instead of a(n).
%F Sum_{k=1..n} 1/a(k) ~ log(log(a(n))) + A077761 + A136141. - _François Huppé_, Jul 31 2024
%p select(t -> nops(numtheory:-factorset(t))=1, [$1..1000]); # _Robert Israel_, Sep 01 2014
%p A246655 := proc(n) A000961(n+1) end proc: # _R. J. Mathar_, Jan 09 2017
%p isprimepower := n -> nops(NumberTheory:-PrimeFactors(n)) = 1: # _Peter Luschny_, Oct 09 2022
%t Select[Range[222], PrimePowerQ]
%o (Sage)
%o [n for n in (1..222) if sloane.A001221(n) == 1]
%o (PARI)
%o [p| p <- [1..222], isprimepower(p)]
%o (PARI) list(lim)=my(v=List(primes([2,lim\=1]))); for(e=2,logint(lim,2), forprime(p=2,sqrtnint(lim,e), listput(v,p^e))); Set(v) \\ _Charles R Greathouse IV_, Feb 03 2023
%o (Python)
%o from sympy import primerange
%o m = 10**5
%o A246655 = []
%o for p in primerange(1,m):
%o pe = p
%o while pe < m:
%o A246655.append(pe)
%o pe *= p
%o A246655 = sorted(A246655) # _Chai Wah Wu_, Sep 04 2014
%o (Python)
%o from sympy import primepi, integer_nthroot
%o def A246655(n):
%o def f(x): return int(n-1+x-sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length())))
%o kmin, kmax = 1,2
%o while f(kmax) >= kmax:
%o kmax <<= 1
%o while True:
%o kmid = kmax+kmin>>1
%o if f(kmid) < kmid:
%o kmax = kmid
%o else:
%o kmin = kmid
%o if kmax-kmin <= 1:
%o break
%o return kmax # _Chai Wah Wu_, Aug 20 2024
%Y There are four different sequences which may legitimately be called "prime powers": A000961 (p^k, k >= 0), A246655 (p^k, k >= 1), A246547 (p^k, k >= 2), A025475 (p^k, k=0 and k >= 2). When you refer to "prime powers", be sure to specify which of these you mean. Also A001597 is the sequence of nontrivial powers n^k, n >= 1, k >= 2. - _N. J. A. Sloane_, Mar 24 2018
%Y Cf. A001221, A014963, A069513, A367064.
%Y Partial sums of A275120.
%K nonn,nice,core,easy
%O 1,1
%A _Peter Luschny_ and _Franklin T. Adams-Watters_, Sep 01 2014