login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246639
Sequence a(n) = 3 + 5*A001519(n+1) appearing in a certain three circle touching problem, together with A246638.
3
8, 13, 28, 68, 173, 448, 1168, 3053, 7988, 20908, 54733, 143288, 375128, 982093, 2571148, 6731348, 17622893, 46137328, 120789088, 316229933, 827900708, 2167472188, 5674515853, 14856075368, 38893710248, 101825055373, 266581455868, 697919312228, 1827176480813, 4783610130208, 12523653909808
OFFSET
0,1
COMMENTS
See the comments under A246638. The curvature c(n) defined there is c(n) = A246638(n) + (4*a(n)/5)*phi with phi = (1+sqrt(5))/2, the golden section. It lives in the quadratic number field Q(sqrt(5)). Descartes' theorem on touching circles gives c(n) = -4/5 + A(n) + A(n+1) + 2*sqrt((-4/5 )*(A(n) + A(n+1)) + A(n)*A(n+1)), with A(n) = A240926(n), n >= 0. For the proof of the first formula given below one compares this a(n) with the a(n) in c(n) given above. This uses standard Chebyshev S-polynomial identities with x = 3, like the three term recurrence and the Cassini-Simson type identity S(n, x)*S(n-2, x) = -1 + S(n-1, x)^2 (here for x=3). This implies S(n, 3)*S(n-1, 3) = (-1 + S(n, 3)^2 + S(n-1, 3)^2)/3. See also the W. Lang link in A240926, part III a).
FORMULA
a(n) = 3 + 5*(S(n, 3) - S(n-1, 3)) = 3 + 5*A001519(n+1), n >= 0, with Chebyshev S-polynomials (see A049310) with S(-1, x) = 0.
O.g.f.: (8-19*x+8*x^2)/((1-x)*(1-3*x+x^2)).
a(n) = 4*a(n-1) - 4*a(n-2) + a(n-3), n >=1, a(-2) = 13, a(-1) = 8, a(0) = 8.
a(n) = 2^(-1-n)*(3*2^(1+n)-(3-sqrt(5))^n*(-5+sqrt(5))+(3+sqrt(5))^n*(5+sqrt(5))). - Colin Barker, Nov 02 2016
MATHEMATICA
CoefficientList[Series[(8-19*x+8*x^2)/((1-x)*(1-3*x+x^2)), {x, 0, 50}], x] (* or *) LinearRecurrence[{4, -4, 1}, {8, 13, 28}, 30] (* G. C. Greubel, Dec 20 2017 *)
PROG
(PARI) Vec((8-19*x+8*x^2)/((1-x)*(1-3*x+x^2)) + O(x^30)) \\ Colin Barker, Nov 02 2016
(Magma) I:=[8, 13, 28]; [n le 3 select I[n] else 4*Self(n-1) -4*Self(n-2) + Self(n-3): n in [1..30]]; // G. C. Greubel, Dec 20 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Sep 01 2014
STATUS
approved