Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Sep 08 2022 08:46:09
%S 1,-2,0,0,-6,16,0,0,8,-50,0,0,16,80,0,0,-38,-96,0,0,-16,160,0,0,48,
%T -242,0,0,64,240,0,0,-56,-288,0,0,-150,400,0,0,112,-384,0,0,112,496,0,
%U 0,-112,-674,0,0,-80,560,0,0,160,-672,0,0,192,880,0,0,-294
%N Expansion of phi(-q) * phi(-q^4)^4 in powers of q where phi() is a Ramanujan theta function.
%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
%H G. C. Greubel, <a href="/A246608/b246608.txt">Table of n, a(n) for n = 0..1000</a>
%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%F Expansion of eta(q)^2 * eta(q^4)^8 / (eta(q^2) * eta(q^8)^4) in powers of q.
%F a(4*n) = A245643(n). a(4*n + 1) = -2 * A244276(n). a(4*n + 2) = a(4*n + 3) = 0.
%e G.f. = 1 - 2*q - 6*q^4 + 16*q^5 + 8*q^8 - 50*q^9 + 16*q^12 + 80*q^13 + ...
%t a[n_]:= SeriesCoefficient[EllipticTheta[3,0, -q]*EllipticTheta[3,0, -q^4 ]^4, {q, 0, n}]; (* corrected by _G. C. Greubel_, Mar 15 2018 *)
%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^4 + A)^8 / (eta(x^2 + A) * eta(x^8 + A)^4), n))};
%o (Magma) A := Basis( ModularForms( Gamma0(8), 5/2), 68); A[1] - 2*A[2];
%Y Cf. A244276, A245643.
%K sign
%O 0,2
%A _Michael Somos_, Sep 01 2014