%I #27 Dec 16 2022 09:00:14
%S 1,2,4,4,6,8,8,8,10,12,12,16,14,16,24,16,18,20,20,24,22,24,24,32,26,
%T 28,40,32,30,48,32,32,34,36,36,40,38,40,43,48,42,44,44,48,60,48,48,64,
%U 50,52,72,56,54,80,61,64,58,60,60,96,62,64,104,64,66,68,68,72,70,72
%N Sum of divisors d of n with property that the binary representation of d can be obtained from the binary representation of n by changing any number of 1's to 0's.
%C Equivalently, the sum of the divisors d of n such that the bitwise OR of d and n is equal to n. - _Chai Wah Wu_, Sep 06 2014
%C Equivalently, the sum of the divisors d of n such that the bitwise AND of n and d is equal to d. - _Amiram Eldar_, Dec 15 2022
%H N. J. A. Sloane, <a href="/A246601/b246601.txt">Table of n, a(n) for n = 1..10000</a>
%F a(2^i) = 2^i.
%F a(odd prime p) = p+1.
%F From _Amiram Eldar_, Dec 15 2022: (Start)
%F a(2*n) = 2*a(n), and therefore a(m*2^k) = 2^k*a(m) for m odd and k>=0.
%F a(2^n-1) = sigma(2^n-1) = A075708(n). (End)
%e 12 = 1100_2; only the divisors 4 = 0100_2 and 12 = 1100_2 satisfy the condition, so(12) = 4+12 = 16.
%e 15 = 1111_2; all divisors 1,3,5,15 satisfy the condition, so a(15)=24.
%p with(numtheory);
%p sd:=proc(n) local a,d,s,t,i,sw;
%p s:=convert(n,base,2);
%p a:=0;
%p for d in divisors(n) do
%p sw:=-1;
%p t:=convert(d,base,2);
%p for i from 1 to nops(t) do if t[i]>s[i] then sw:=1; fi; od:
%p if sw<0 then a:=a+d; fi;
%p od;
%p a;
%p end;
%p [seq(sd(n),n=1..100)];
%t a[n_] := DivisorSum[n, #*Boole[BitOr[#, n] == n] &]; Array[a, 100] (* _Jean-François Alcover_, Dec 02 2015, adapted from PARI *)
%o (Python)
%o from sympy import divisors
%o def A246601(n):
%o ....return sum(d for d in divisors(n) if n|d == n)
%o # _Chai Wah Wu_, Sep 06 2014
%o (PARI) a(n) = sumdiv(n, d, d*(bitor(n,d)==n)); \\ _Michel Marcus_, Sep 07 2014
%Y Cf. A000005, A000203, A075708, A246600.
%K nonn,base
%O 1,2
%A _N. J. A. Sloane_, Sep 06 2014