Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #55 Mar 15 2020 06:00:07
%S 1,1,1,4,1,1,4,9,1,1,1,4,4,4,9,16,1,1,1,4,1,1,4,9,4,4,4,16,9,9,16,25,
%T 1,1,1,4,1,1,4,9,1,1,1,4,4,4,9,16,4,4,4,16,4,4,16,36,9,9,9,36,16,16,
%U 25,36,1,1,1,4,1,1,4,9,1,1,1,4,4,4,9,16,1,1,1,4,1,1
%N Run Length Transform of squares.
%C The Run Length Transform of a sequence {S(n), n>=0} is defined to be the sequence {T(n), n>=0} given by T(n) = Product_i S(i), where i runs through the lengths of runs of 1's in the binary expansion of n. E.g., 19 is 10011 in binary, which has two runs of 1's, of lengths 1 and 2. So T(19) = S(1)*S(2). T(0)=1 (the empty product).
%H Chai Wah Wu, <a href="/A246595/b246595.txt">Table of n, a(n) for n = 0..8192</a>
%H N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015.
%F a(n) = A227349(n)^2. - _Omar E. Pol_, Feb 10 2015
%e From _Omar E. Pol_, Feb 10 2015: (Start)
%e Written as an irregular triangle in which row lengths is A011782:
%e 1;
%e 1;
%e 1,4;
%e 1,1,4,9;
%e 1,1,1,4,4,4,9,16;
%e 1,1,1,4,1,1,4,9,4,4,4,16,9,9,16,25;
%e 1,1,1,4,1,1,4,9,1,1,1,4,4,4,9,16,4,4,4,16,4,4,16,36,9,9,9,36,16,16,25,36;
%e ...
%e Right border gives A253909: 1 together with the positive squares.
%e (End)
%e From _Omar E. Pol_, Mar 19 2015: (Start)
%e Also, the sequence can be written as an irregular tetrahedron T(s,r,k) as shown below:
%e 1;
%e ..
%e 1;
%e ..
%e 1;
%e 4;
%e .......
%e 1, 1;
%e 4;
%e 9;
%e ...............
%e 1, 1, 1, 4;
%e 4, 4;
%e 9;
%e 16;
%e .............................
%e 1, 1, 1, 4, 1, 1, 4, 9;
%e 4, 4, 4, 16;
%e 9, 9;
%e 16;
%e 25;
%e ......................................................
%e 1, 1, 1, 4, 1, 1, 4, 9, 1, 1, 1, 4, 4, 4, 9, 16;
%e 4, 4, 4, 16, 4, 4, 16, 36;
%e 9, 9, 9, 36;
%e 16, 16;
%e 25;
%e 36;
%e ...
%e Apart from the initial 1, we have that T(s,r,k) = T(s+1,r,k).
%e (End)
%p ans:=[];
%p for n from 0 to 100 do lis:=[]; t1:=convert(n, base, 2); L1:=nops(t1); out1:=1; c:=0;
%p for i from 1 to L1 do
%p if out1 = 1 and t1[i] = 1 then out1:=0; c:=c+1;
%p elif out1 = 0 and t1[i] = 1 then c:=c+1;
%p elif out1 = 1 and t1[i] = 0 then c:=c;
%p elif out1 = 0 and t1[i] = 0 then lis:=[c, op(lis)]; out1:=1; c:=0;
%p fi;
%p if i = L1 and c>0 then lis:=[c, op(lis)]; fi;
%p od:
%p a:=mul(i^2, i in lis);
%p ans:=[op(ans), a];
%p od:
%p ans;
%t Table[Times @@ (Length[#]^2&) /@ Select[Split[IntegerDigits[n, 2]], #[[1]] == 1&], {n, 0, 85}] (* _Jean-François Alcover_, Jul 11 2017 *)
%o (Python)
%o from operator import mul
%o from functools import reduce
%o from re import split
%o def A246595(n):
%o return reduce(mul,(len(d)**2 for d in split('0+',bin(n)[2:]) if d != '')) if n > 0 else 1 # _Chai Wah Wu_, Sep 07 2014
%o (Sage) # uses[RLT from A246660]
%o A246595_list = lambda len: RLT(lambda n: n^2, len)
%o A246595_list(86) # _Peter Luschny_, Sep 07 2014
%o (Scheme) ; using MIT/GNU Scheme
%o (define (A246595 n) (fold-left (lambda (a r) (* a r r)) 1 (bisect (reverse (binexp->runcount1list n)) (- 1 (modulo n 2)))))
%o ;; Other functions are as in A227349 - _Antti Karttunen_, Sep 08 2014
%Y Cf. A000290, A253082.
%Y Cf. A003714 (gives the positions of ones).
%Y Run Length Transforms of other sequences: A071053, A227349, A246588, A246596, A246660, A246661, A246674.
%K nonn
%O 0,4
%A _N. J. A. Sloane_, Sep 06 2014