login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Concatenation of the n-th Fibonacci number with itself.
1

%I #38 Sep 08 2022 08:46:09

%S 11,11,22,33,55,88,1313,2121,3434,5555,8989,144144,233233,377377,

%T 610610,987987,15971597,25842584,41814181,67656765,1094610946,

%U 1771117711,2865728657,4636846368,7502575025,121393121393,196418196418,317811317811,514229514229

%N Concatenation of the n-th Fibonacci number with itself.

%C a(n) is the n-th Fibonacci number concatenated with itself; concatenation A000045.

%C Also, the quotient of a(n) divided by the n-th Fibonacci number is 10^d(n)+1, where d(n) is the number of digits in the n-th Fibonacci number (A060384).

%H Harvey P. Dale, <a href="/A246554/b246554.txt">Table of n, a(n) for n = 1..1000</a>

%F a(n) = A000045(n)*(10^A060384(n)+1). - _Robert Israel_, Nov 16 2014

%e The 7th Fibonacci number, 13, is concatenated with itself to become a(7) = 1313.

%p A:= proc(n)

%p local f;

%p f:= combinat:-fibonacci(n);

%p (10^length(f)+1)*f;

%p end proc:

%p map(A, [$1..100]); # _Robert Israel_, Nov 16 2014

%p # second Maple program:

%p a:= n-> (p-> parse(cat(p$2)))((<<0|1>, <1|1>>^n)[1, 2]):

%p seq(a(n), n=1..100); # _Alois P. Heinz_, Nov 17 2014

%t Table[FromDigits[Join[Flatten[IntegerDigits[{Fibonacci[n], Fibonacci[n]}]]]], {n, 50}] (* _Vincenzo Librandi_, Nov 15 2014 *)

%t #*10^IntegerLength[#]+#&/@Fibonacci[Range[30]] (* _Harvey P. Dale_, Jul 04 2015 *)

%o (PARI) a(n)=(k->eval(Str(k,k)))(fibonacci(n)) \\ _Charles R Greathouse IV_, Nov 15 2014

%o (Magma) [Seqint(Intseq(Fibonacci(n)) cat Intseq(Fibonacci(n))): n in [1..30]]; // _Vincenzo Librandi_, Nov 15 2014

%Y Cf. A247337, A247338, A000045, A060384.

%K nonn,base

%O 1,1

%A _Indrani Das_, Nov 14 2014