%I #6 Oct 04 2014 05:34:47
%S 1,5,36,305,2821,27690,282699,2967285,31785786,345815975,3808549531,
%T 42360017130,474990254821,5362633500755,60897115958286,
%U 695012481567465,7966829676299139,91674042449673960,1058486539560201051,12258669983923625475,142359286920427682046,1657287004720545992505
%N G.f.: Sum_{n>=0} x^n / (1-4*x)^(2*n+1) * [Sum_{k=0..n} C(n,k)^2 * 3^k * x^k] * [Sum_{k=0..n} C(n,k)^2 * 4^k * x^k].
%C a(n) == 1 (mod 3) iff n = A074939(k) for k>=0, where A074939 gives even numbers such that base 3 representation contains no 2.
%C a(n) == 2 (mod 3) iff n = A074938(k) for k>=0, where A074938 gives odd numbers such that base 3 representation contains no 2.
%F G.f.: Sum_{n>=0} x^n / (1-x)^(2*n+1) * [Sum_{k=0..n} C(n,k)^2 * x^k] * [Sum_{k=0..n} C(n,k)^2 * 4^(n-k) * 3^k * x^k].
%F G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k)^2 * Sum_{j=0..k} C(k,j)^2 * 4^(k-j) * 3^j * x^j.
%F G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k)^2 * 4^(n-k) * Sum_{j=0..k} C(k,j)^2 * 3^j * x^j.
%F a(n) = Sum_{k=0..[n/2]} 3^k * Sum_{j=0..n-2*k} C(n-k, k+j)^2 * C(k+j, j)^2 * 4^j.
%F a(n) ~ sqrt(36 + 29*sqrt(3) + 3*sqrt(423 + 232*sqrt(3))) * (9/2 + sqrt(3) + 3/2*sqrt(9 + 4*sqrt(3)))^n / (8*Pi*n). - _Vaclav Kotesovec_, Oct 04 2014
%e G.f.: A(x) = 1 + 5*x + 36*x^2 + 305*x^3 + 2821*x^4 + 27690*x^5 +...
%t Table[Sum[3^k * Sum[Binomial[n-k, k+j]^2 * Binomial[k+j, j]^2 * 4^j,{j,0,n-2*k}],{k,0,Floor[n/2]}],{n,0,20}] (* _Vaclav Kotesovec_, Oct 04 2014 *)
%o (PARI) /* By definition: */
%o {a(n)=local(A=1); A=sum(m=0, n, x^m/(1-4*x)^(2*m+1) * sum(k=0, m, binomial(m, k)^2 * 3^k * x^k) * sum(k=0, m, binomial(m, k)^2 * 4^k * x^k) +x*O(x^n)); polcoeff(A, n)}
%o for(n=0, 25, print1(a(n), ", "))
%o (PARI) /* By a binomial identity: */
%o {a(n)=local(A=1); A=sum(m=0, n, x^m/(1-x)^(2*m+1) * sum(k=0, m, binomial(m, k)^2 * 4^(m-k) * 3^k * x^k) * sum(k=0, m, binomial(m, k)^2 * x^k) +x*O(x^n)); polcoeff(A, n)}
%o for(n=0, 25, print1(a(n), ", "))
%o (PARI) /* By a binomial identity: */
%o {a(n)=polcoeff(sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)^2 * sum(j=0, k, binomial(k, j)^2 * 4^(k-j) * 3^j * x^j)+x*O(x^n))), n)}
%o for(n=0, 25, print1(a(n), ", "))
%o (PARI) /* By a binomial identity: */
%o {a(n)=polcoeff(sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)^2 * 4^(m-k) * sum(j=0, k, binomial(k, j)^2 * 3^j * x^j)+x*O(x^n))), n)}
%o for(n=0, 25, print1(a(n), ", "))
%o (PARI) /* Formula for a(n): */
%o {a(n)=sum(k=0, n\2, sum(j=0, n-2*k, 3^k * binomial(n-k, k+j)^2 * binomial(k+j, j)^2 * 4^j))}
%o for(n=0, 25, print1(a(n), ", "))
%Y Cf. A246509, A246056, A074938, A074939.
%K nonn
%O 0,2
%A _Paul D. Hanna_, Aug 27 2014