OFFSET
0,1
COMMENTS
It follows from Mertens theorem that this constant is the limit for large m of log(prime(m))*Product_{k=1..m} 1/(1 + 1/prime(k)).
LINKS
Stanislav Sykora, Table of n, a(n) for n = 0..2000
Eric Weisstein's World of Mathematics, Mertens Theorem, Equations 5-9
FORMULA
Equals Pi^2/(6*exp(gamma)).
Equals lim_{m->infinity} log(prime(m))*Product_{k=1..m} 1/(1 + 1/prime(k)).
EXAMPLE
0.9235638316741813823235099539877039168469319632611163252035958316...
MATHEMATICA
RealDigits[Zeta[2]/E^EulerGamma, 10, 100][[1]] (* Alonso del Arte, Nov 14 2014 *)
PROG
(PARI) Pi^2/6/exp(Euler)
(Magma) R:=RealField(100); Pi(R)^2/(6*Exp(EulerGamma(R))); // G. C. Greubel, Aug 30 2018
CROSSREFS
KEYWORD
AUTHOR
Stanislav Sykora, Nov 14 2014
STATUS
approved