login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of length 1+3 0..n arrays with no pair in any consecutive four terms totalling exactly n.
1

%I #7 Nov 06 2018 06:44:52

%S 2,10,60,172,462,966,1880,3256,5370,8290,12372,17700,24710,33502,

%T 44592,58096,74610,94266,117740,145180,177342,214390,257160,305832,

%U 361322,423826,494340,573076,661110,758670,866912,986080,1117410,1261162

%N Number of length 1+3 0..n arrays with no pair in any consecutive four terms totalling exactly n.

%H R. H. Hardin, <a href="/A246480/b246480.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 3*a(n-1) - a(n-2) - 5*a(n-3) + 5*a(n-4) + a(n-5) - 3*a(n-6) + a(n-7).

%F Conjectures from _Colin Barker_, Nov 06 2018: (Start)

%F G.f.: 2*x*(1 + 2*x + 16*x^2 + 6*x^3 + 23*x^4) / ((1 - x)^5*(1 + x)^2).

%F a(n) = -n + 3*n^2 - 2*n^3 + n^4 for n even.

%F a(n) = -3 + 3*n + 3*n^2 - 2*n^3 + n^4 for n odd.

%F (End)

%e Some solutions for n=6:

%e ..6....4....6....1....4....4....1....5....4....0....2....1....1....4....0....5

%e ..3....1....5....4....5....0....0....3....4....4....2....2....3....4....4....5

%e ..5....4....5....0....0....5....3....5....3....3....1....3....2....6....5....5

%e ..2....4....2....4....5....5....4....5....5....5....0....2....0....4....5....5

%Y Row 1 of A246479.

%K nonn

%O 1,1

%A _R. H. Hardin_, Aug 27 2014