login
A246384
Column 2 of triangular matrix A246381 = exp(L) where L(n,k) = C(2*n, 2*k+1)/2.
4
1, 3, 34, 296, 3463, 49432, 810268, 15455072, 338772685, 8394224560, 233329015938, 7227504399296, 247636140843723, 9326473325044712, 384115023516036088, 17218573777983105984, 836440310185415850201, 43861870915784327912032, 2474220973150711726940734
OFFSET
0,2
PROG
(PARI) {a(n)=local(L=matrix(n+3, n+3, r, c, if(r>=c, binomial(2*r-2, 2*c-1)/2)), A);
A=sum(m=0, n, L^m/m!); A[n+3, 3]}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 24 2014
STATUS
approved