login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246384
Column 2 of triangular matrix A246381 = exp(L) where L(n,k) = C(2*n, 2*k+1)/2.
4
1, 3, 34, 296, 3463, 49432, 810268, 15455072, 338772685, 8394224560, 233329015938, 7227504399296, 247636140843723, 9326473325044712, 384115023516036088, 17218573777983105984, 836440310185415850201, 43861870915784327912032, 2474220973150711726940734
OFFSET
0,2
PROG
(PARI) {a(n)=local(L=matrix(n+3, n+3, r, c, if(r>=c, binomial(2*r-2, 2*c-1)/2)), A);
A=sum(m=0, n, L^m/m!); A[n+3, 3]}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 24 2014
STATUS
approved