login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangular matrix T defined by T = exp(L) where L(n,k) = C(2*n, 2*k+1)/2, as read by rows n >= 0, k=0..n.
6

%I #13 Feb 25 2020 00:40:13

%S 1,1,1,3,2,1,12,13,3,1,73,80,34,4,1,584,701,296,70,5,1,5889,7680,3463,

%T 816,125,6,1,73184,100519,49432,12139,1876,203,7,1,1089057,1571040,

%U 810268,217728,34294,3808,308,8,1,19019632,28717865,15455072,4354260,751792,83406,7056,444,9,1

%N Triangular matrix T defined by T = exp(L) where L(n,k) = C(2*n, 2*k+1)/2, as read by rows n >= 0, k=0..n.

%e Triangle begins:

%e 1;

%e 1, 1;

%e 3, 2, 1;

%e 12, 13, 3, 1;

%e 73, 80, 34, 4, 1;

%e 584, 701, 296, 70, 5, 1;

%e 5889, 7680, 3463, 816, 125, 6, 1;

%e 73184, 100519, 49432, 12139, 1876, 203, 7, 1;

%e 1089057, 1571040, 810268, 217728, 34294, 3808, 308, 8, 1;

%e 19019632, 28717865, 15455072, 4354260, 751792, 83406, 7056, 444, 9, 1;

%e 384301729, 603257920, 338772685, 99130208, 17974226, 2186368, 181602, 12192, 615, 10, 1; ...

%e The matrix logarithm, L, begins:

%e 0;

%e 1, 0;

%e 2, 2, 0;

%e 3, 10, 3, 0;

%e 4, 28, 28, 4, 0;

%e 5, 60, 126, 60, 5, 0;

%e 6, 110, 396, 396, 110, 6, 0;

%e 7, 182, 1001, 1716, 1001, 182, 7, 0;

%e 8, 280, 2184, 5720, 5720, 2184, 280, 8, 0;

%e 9, 408, 4284, 15912, 24310, 15912, 4284, 408, 9, 0;

%e 10, 570, 7752, 38760, 83980, 83980, 38760, 7752, 570, 10, 0; ...

%e where L(n,k) = C(2*n, 2*k+1)/2.

%e The matrix square begins:

%e 1;

%e 2, 1;

%e 8, 4, 1;

%e 46, 32, 6, 1;

%e 376, 280, 80, 8, 1;

%e 3962, 3304, 972, 160, 10, 1;

%e 52268, 47100, 15400, 2552, 280, 12, 1;

%e 837574, 803852, 283394, 51704, 5642, 448, 14, 1;

%e 15919312, 16175600, 6028944, 1187632, 141136, 11088, 672, 16, 1; ...

%o (PARI) {T(n,k)=local(L=matrix(n+1,n+1,r,c,if(r>=c,binomial(2*r-2,2*c-1)/2)),A);

%o A=sum(m=0,n,L^m/m!);A[n+1,k+1]}

%o for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))

%Y Cf. A246382, A246383, A246384, A246385, A246386, A246387.

%K nonn,tabl

%O 0,4

%A _Paul D. Hanna_, Aug 24 2014