Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Mar 24 2021 09:52:04
%S 0,1,1,1,2,2,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,1,1,1,1,2,2,1,1,1,1,
%T 2,2,2,2,2,2,2,2,3,3,3,3,3,3,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,
%U 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4
%N Maximum digit in the factorial base expansion of n (A007623).
%C Maximum entry in n-th row of A108731.
%H Antti Karttunen, <a href="/A246359/b246359.txt">Table of n, a(n) for n = 0..10080</a>
%H <a href="/index/Fa#facbase">Index entries for sequences related to factorial base representation</a>
%F From _Antti Karttunen_, Aug 29 2016: (Start)
%F a(0) = 0; for n >= 1, a(n) = 1 + a(A257684(n)).
%F a(0) = 0; for n >= 1, a(n) = max(A099563(n), a(A257687(n))).
%F a(n) = A051903(A276076(n)).
%F (End)
%e Factorial base representation of 46 is "1320" as 46 = 1*4! + 3*3! + 2*2! + 0*1!, and the largest of these digits is 3, thus a(46) = 3.
%t nn = 96; m = 1; While[Factorial@ m < nn, m++]; m; Table[Max@ IntegerDigits[n, MixedRadix[Reverse@ Range[2, m]]], {n, 0, nn}] (* Version 10.2, or *)
%t f[n_] := Block[{a = {{0, n}}}, Do[AppendTo[a, {First@ #, Last@ #} &@ QuotientRemainder[a[[-1, -1]], Times @@ Range[# - i]]], {i, 0, #}] &@ NestWhile[# + 1 &, 0, Times @@ Range[# + 1] <= n &]; Most@ Rest[a][[All, 1]] /. {} -> {0}]; Table[Max@ f@ n, {n, 0, 96}] (* _Michael De Vlieger_, Aug 29 2016 *)
%o (MIT/GNU Scheme) (define (A246359 n) (let loop ((n n) (i 2) (md 0)) (if (zero? n) md (loop (floor->exact (/ n i)) (+ i 1) (max (modulo n i) md)))))
%o (Python)
%o def a007623(n, p=2): return n if n<p else a007623(n//p, p+1)*10 + n%p
%o def a(n): return int(max(str(a007623(n))))
%o print([a(n) for n in range(101)]) # _Indranil Ghosh_, Jun 21 2017
%Y Cf. A007623, A034968, A051903, A060130, A084558, A099563, A257684, A257687, A276076.
%Y Cf. also A249070.
%K nonn,base
%O 0,5
%A _Antti Karttunen_, Oct 20 2014