login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A246324 Numbers n such that the Shephard-Todd group G_n is an exceptional spetsial irreducible reflection group acting on a complex vector space. 0

%I

%S 4,6,8,14,23,24,25,26,27,28,29,30,32,33,34,35,36,37

%N Numbers n such that the Shephard-Todd group G_n is an exceptional spetsial irreducible reflection group acting on a complex vector space.

%C For the definition of "spetsial" (not a typo!) see the Broué et al. references.

%H Michel Broué, Gunter Malle, Jean Michel, <a href="http://arxiv.org/abs/1204.5846">Split spetses for primitive reflection groups</a>, arXiv: 1204.5846 [math.RT], 2012.

%H Michel Broué, Gunter Malle, and Jean Michel, <a href="http://smf4.emath.fr/Publications/Asterisque/2014/359/html/smf_ast_359.php">Split Spetses for Primitive Reflection Groups</a>, Société Mathématique de France, 2014, 146 pp.

%H G. C. Shephard and J. A. Todd, <a href="http://dx.doi.org/10.4153/CJM-1954-028-3">Finite unitary reflection groups</a>, Canadian J. Math. 6, (1954). 274--304. MR0059914 (15,600b).

%K nonn,fini,full

%O 1,1

%A _N. J. A. Sloane_, Aug 29 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 4 21:43 EDT 2020. Contains 333238 sequences. (Running on oeis4.)