login
Numbers k such that cos(k) < cos(k+1) > cos(k+2).
4

%I #5 Aug 23 2014 08:50:46

%S 5,12,18,24,30,37,43,49,56,62,68,74,81,87,93,100,106,112,118,125,131,

%T 137,144,150,156,162,169,175,181,187,194,200,206,213,219,225,231,238,

%U 244,250,257,263,269,275,282,288,294,301,307,313,319,326,332,338,345

%N Numbers k such that cos(k) < cos(k+1) > cos(k+2).

%C The sequences A026311, A246300, A246301, A246302 partition the nonnegative integers.

%H Clark Kimberling, <a href="/A246300/b246300.txt">Table of n, a(n) for n = 1..1000</a>

%t z = 520; f[x_] := f[x] = Cos[x]; t = Range[0, z];

%t Select[t, f[#] > f[# + 1] &] (* A026311 *)

%t Select[t, f[#] < f[# + 1] > f[# + 2] &] (* A246300 *)

%t Select[t, f[#] < f[# + 1] < f[# + 2] > f[# + 3] &] (* A246301 *)

%t Select[t, f[#] < f[# + 1] < f[# + 2] < f[# + 3] > f[# + 4] &] (* A246302 *)

%Y Cf. A246294, A026311, A246301, A246302.

%K nonn,easy

%O 1,1

%A _Clark Kimberling_, Aug 22 2014