login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of permutations on [n*(n+1)/2] with cycles of n distinct lengths.
4

%I #11 Jul 25 2018 15:01:27

%S 1,1,3,120,151200,10897286400,70959641905152000,

%T 60493719168990845337600000,9226024969987629401488081551360000000,

%U 329646772667218349211759153151614073700352000000000,3498788402132461399351052923160966975192989707740695756800000000000

%N Number of permutations on [n*(n+1)/2] with cycles of n distinct lengths.

%H Alois P. Heinz, <a href="/A246292/b246292.txt">Table of n, a(n) for n = 0..30</a>

%F a(n) = C(n+1,2)! / n!.

%F a(n) = A218868(n*(n+1)/2,n) = A218868(A000217(n),n).

%F a(n) = A242027(n*(n+1)/2,n) = A242027(A000217(n),n).

%F a(n) = A022915(n) * A000178(n-1) for n>0.

%p a:= n-> binomial(n+1, 2)!/n!:

%p seq(a(n), n=0..12);

%Y Cf. A000142, A000178, A000217, A022915, A218868, A242027, A317165.

%K nonn

%O 0,3

%A _Alois P. Heinz_, Aug 21 2014