login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (n^2+9*n-8)/2.
4

%I #29 Feb 25 2023 05:23:39

%S 1,7,14,22,31,41,52,64,77,91,106,122,139,157,176,196,217,239,262,286,

%T 311,337,364,392,421,451,482,514,547,581,616,652,689,727,766,806,847,

%U 889,932,976,1021,1067,1114,1162,1211,1261,1312,1364,1417,1471

%N a(n) = (n^2+9*n-8)/2.

%C a(n) - 7*(n-1) is a triangular number. Sequence gives positive x values solving the Diophantine equation y^2 - 8*x = 113. - _Bruno Berselli_, Aug 27 2014

%H Vincenzo Librandi, <a href="/A246172/b246172.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F G.f.: x*(1+4*x-4*x^2)/(1-x)^3.

%F a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) = 2*a(n-1)-a(n-2)+1.

%F a(n+1) - a(n) = n + 5. - _Jacques ALARDET_, Aug 04 2015

%F Sum_{n>=1} 1/a(n) = 4919/8008 + 2*Pi*tan(sqrt(113)*Pi/2)/sqrt(113). - _Amiram Eldar_, Feb 25 2023

%t Table[(n^2 + 9 n - 8)/2, {n, 1, 60}]

%o (Magma) [(n^2+9*n-8)/2: n in [1..60]];

%o (Sage) [(n^2+9*n-8)/2 for n in (1..60)] # _Bruno Berselli_, Aug 27 2014

%o (PARI) a(n)=(n^2+9*n-8)/2 \\ _Charles R Greathouse IV_, Jun 17 2017

%K nonn,easy

%O 1,2

%A _Vincenzo Librandi_, Aug 24 2014