

A246104


Least m > 0 for which (s(m), ..., s(n+m1) = (s(0), ..., s(n)), the first n+1 terms of the infinite Fibonacci word A003849.


3



2, 3, 5, 5, 8, 8, 8, 13, 13, 13, 13, 13, 21, 21, 21, 21, 21, 21, 21, 21, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

If n is a term of A001911, then a(n) = n+2, otherwise a(n) > n+2.  Ivan Neretin, Sep 30 2017


LINKS

Ivan Neretin, Table of n, a(n) for n = 0..10944


FORMULA

Concatenation of F(n  2) copies of F(n), for n >= 1, where F = A000045 (Fibonacci numbers).


EXAMPLE

In A003849, the initial segment (s(0), ..., s(6)) = (0,1,0,0,1,0,1) first repeats at (s(8), ..., s(14)), so that a(6) = 8.


MAPLE

seq(combinat:fibonacci(n)$combinat:fibonacci(n2), n=2..12); # Robert Israel, Oct 01 2017


MATHEMATICA

s = Flatten[Nest[{#, #[[1]]} &, {0, 1}, 12]]; b[m_, n_] := b[m, n] = Take[s, {m, n}]; q = 1 + Flatten[Table[Select[n + Range[2, 1600], b[#, n + #  1] == b[1, n] &, 1], {n, 1, 120}]]
Flatten@Table[ConstantArray[Fibonacci[n + 1], Fibonacci[n  1]], {n, 10}] (* Ivan Neretin, Sep 30 2017 *)


CROSSREFS

Cf. A000045, A003849, A241422, A246105.
Sequence in context: A067284 A123339 * A256654 A204926 A256663 A188201
Adjacent sequences: A246101 A246102 A246103 * A246105 A246106 A246107


KEYWORD

nonn,easy


AUTHOR

Clark Kimberling, Aug 14 2014


STATUS

approved



