login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A246104 Least m > 0 for which (s(m), ..., s(n+m-1) = (s(0), ..., s(n)), the first n+1 terms of the infinite Fibonacci word A003849. 3
2, 3, 5, 5, 8, 8, 8, 13, 13, 13, 13, 13, 21, 21, 21, 21, 21, 21, 21, 21, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

If n is a term of A001911, then a(n) = n+2, otherwise a(n) > n+2. - Ivan Neretin, Sep 30 2017

LINKS

Ivan Neretin, Table of n, a(n) for n = 0..10944

FORMULA

Concatenation of F(n - 2) copies of F(n), for n >= 1, where F = A000045 (Fibonacci numbers).

EXAMPLE

In A003849, the initial segment (s(0), ..., s(6)) = (0,1,0,0,1,0,1) first repeats at (s(8), ..., s(14)), so that a(6) = 8.

MAPLE

seq(combinat:-fibonacci(n)$combinat:-fibonacci(n-2), n=2..12); # Robert Israel, Oct 01 2017

MATHEMATICA

s = Flatten[Nest[{#, #[[1]]} &, {0, 1}, 12]]; b[m_, n_] := b[m, n] = Take[s, {m, n}]; q = -1 + Flatten[Table[Select[n + Range[2, 1600], b[#, n + # - 1] == b[1, n] &, 1], {n, 1, 120}]]

Flatten@Table[ConstantArray[Fibonacci[n + 1], Fibonacci[n - 1]], {n, 10}] (* Ivan Neretin, Sep 30 2017 *)

CROSSREFS

Cf. A000045, A003849, A241422, A246105.

Sequence in context: A067284 A123339 * A256654 A204926 A256663 A188201

Adjacent sequences:  A246101 A246102 A246103 * A246105 A246106 A246107

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Aug 14 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified October 23 23:22 EDT 2017. Contains 293833 sequences.