login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of lim_{n->infinity} ((1/log(n)^2)*Product_{2 < p < n, p prime} p/(p-2)).
1

%I #33 Dec 20 2017 04:10:51

%S 1,2,0,1,3,0,3,5,5,9,9,6,7,3,6,2,2,4,1,2,4,7,5,5,5,9,5,9,2,0,7,3,8,3,

%T 4,8,2,4,5,3,8,3,8,4,4,9,4,2,7,1,1,3,0,8,5,1,8,1,9,5,5,9,7,4,1,4,8,0,

%U 0,9,9,7,7,9,4,3,7,7,5,2,2,5,9,6,7,0,6,4,3,1,8,4,8,6,1,9,7,6,0,8,8

%N Decimal expansion of lim_{n->infinity} ((1/log(n)^2)*Product_{2 < p < n, p prime} p/(p-2)).

%D Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.1 Hardy-Littlewood constants, p. 86.

%H Eric Weisstein's MathWorld, <a href="http://mathworld.wolfram.com/TwinPrimesConstant.html">Twin Primes Constant</a>

%F Equals exp(2*EulerGamma)/(4*C_2), where C_2 is the twin primes constant A005597.

%e 1.201303559967362241247555959207383482453838449427113...

%t digits = 101; s[n_] := (1/n)* N[Sum[MoebiusMu[d]*2^(n/d), {d, Divisors[n]}], digits + 60]; C2 = (175/256)*Product[(Zeta[ n]*(1 - 2^(-n))*(1 - 3^(-n))*(1 - 5^(-n))*(1 - 7^(-n)))^(-s[ n]), {n, 2, digits + 60}]; RealDigits[Exp[2*EulerGamma]/(4*C2), 10, digits] // First

%Y Cf. A005597.

%K nonn,cons

%O 1,2

%A _Jean-François Alcover_, Sep 11 2014