login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of length n+2 0..3 arrays with no pair in any consecutive three terms totalling exactly 3.
1

%I #10 Nov 05 2018 21:03:04

%S 28,68,164,396,956,2308,5572,13452,32476,78404,189284,456972,1103228,

%T 2663428,6430084,15523596,37477276,90478148,218433572,527345292,

%U 1273124156,3073593604,7420311364,17914216332,43248744028,104411704388

%N Number of length n+2 0..3 arrays with no pair in any consecutive three terms totalling exactly 3.

%H R. H. Hardin, <a href="/A245990/b245990.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 2*a(n-1) + a(n-2).

%F Conjectures from _Colin Barker_, Nov 05 2018: (Start)

%F G.f.: 4*x*(7 + 3*x) / (1 - 2*x - x^2).

%F a(n) = sqrt(2)*((1-sqrt(2))^n*(-4+3*sqrt(2)) + (1+sqrt(2))^n*(4+3*sqrt(2))).

%F (End)

%e Some solutions for n=10:

%e 3 2 1 1 2 1 1 2 0 2 3 0 1 3 3 0

%e 3 2 1 0 2 3 0 2 2 3 2 0 3 1 2 2

%e 3 3 3 0 3 1 0 2 0 2 2 0 1 1 2 0

%e 3 2 1 1 3 1 0 2 0 3 2 1 3 3 3 2

%e 3 3 1 1 1 1 0 0 0 3 0 1 1 1 3 2

%e 2 3 0 0 3 3 2 2 1 2 2 1 1 3 2 2

%e 2 2 1 0 1 1 2 2 1 3 0 1 1 3 2 2

%e 2 3 1 1 3 3 3 2 1 3 2 0 3 3 3 0

%e 3 3 1 1 3 1 3 2 3 3 0 0 1 2 2 0

%e 2 1 0 3 3 1 2 3 3 2 2 0 1 3 2 1

%e 3 1 0 1 3 0 3 3 2 2 2 0 0 3 3 1

%e 2 0 1 3 3 0 2 1 3 0 3 1 0 1 2 3

%Y Column 3 of A245995.

%K nonn

%O 1,1

%A _R. H. Hardin_, Aug 09 2014