Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Aug 08 2014 07:30:05
%S 1435,7669,39721,199141,1021225,5208673,26526337,135336793,690045061,
%T 3518298991,17940920173,91480646389,466463146399,2378531818147,
%U 12128251046821,61842638080231,315339231002215,1607932492222021
%N Number of length n+3 0..6 arrays with some pair in every consecutive four terms totalling exactly 6
%C Column 6 of A245950
%H R. H. Hardin, <a href="/A245948/b245948.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 4*a(n-1) +8*a(n-2) +2*a(n-3) -39*a(n-4) -139*a(n-5) -175*a(n-6) -179*a(n-7) +980*a(n-8) +1638*a(n-9) -1266*a(n-10) -210*a(n-11) -352*a(n-12) +123*a(n-13) +24*a(n-14) +19*a(n-15) -5*a(n-16)
%e Some solutions for n=4
%e ..3....4....0....4....0....1....3....4....4....1....0....4....4....3....1....4
%e ..6....5....5....6....2....4....2....5....3....1....1....1....3....6....4....1
%e ..1....4....6....1....4....2....3....1....2....4....0....5....3....5....6....1
%e ..0....1....5....0....5....5....4....5....4....2....6....6....3....1....0....5
%e ..6....4....1....6....6....0....2....6....5....4....2....1....3....0....1....3
%e ..6....5....4....2....0....6....2....2....5....0....4....2....1....0....0....1
%e ..1....2....5....1....4....2....1....4....1....4....1....0....2....6....5....5
%K nonn
%O 1,1
%A _R. H. Hardin_, Aug 08 2014