OFFSET
0,2
COMMENTS
Here AGM(x,y) = AGM((x+y)/2, sqrt(x*y)) denotes the arithmetic-geometric mean.
Self-convolution of A245931.
Limit a(n+1)/a(n) = 3.
LINKS
Paul D. Hanna, Table of n, a(n) for n = 0..1000
FORMULA
G.f.: 1 / AGM((1-x)^2 + 4*x^2, (1-x)^2 - 4*x^2).
G.f.: 1 / AGM((1-x)^2, sqrt((1-x)^4 - 16*x^4)).
Recurrence: n^2*a(n) = (5*n^2 - 5*n + 2)*a(n-1) - 2*(5*n^2 - 10*n + 6)*a(n-2) + 2*(5*n^2 - 15*n + 12)*a(n-3) + 11*(n-2)^2*a(n-4) - 15*(n-3)*(n-2)*a(n-5). - Vaclav Kotesovec, Aug 16 2014
a(n) ~ 3^(n+2) / (4*Pi*n). - Vaclav Kotesovec, Aug 16 2014
EXAMPLE
G.f.: A(x) = 1 + 2*x + 3*x^2 + 4*x^3 + 9*x^4 + 30*x^5 + 91*x^6 + 232*x^7 +...
where
1/A(x) = 1 - 2*x + x^2 - 4*x^4 - 8*x^5 - 12*x^6 - 16*x^7 - 40*x^8 - 144*x^9 - 448*x^10 - 1152*x^11 - 2732*x^12 - 6840*x^13 - 18964*x^14 +...
equals AGM((1 - 3*x)^2, (1 + x)^2).
SPECIFIC VALUES:
A(x) = 2 at x = 0.2650276124990406644...
A(x) = 3 at x = 0.31872724866867463...
A(x) = 4 at x = 0.32990867978741...
PROG
(PARI) {a(n)=local(A=1); A = 1 / agm((1-3*x)^2, (1+x)^2 +x*O(x^n)); polcoeff(A, n)}
for(n=0, 35, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 14 2014
STATUS
approved