login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of pairs of endofunctions f, g on [n] satisfying f(g^9(i)) = f(i) for all i in [n].
2

%I #4 Aug 06 2014 15:42:43

%S 1,1,10,207,6856,302345,17812656,1384059775,131612023936,

%T 30607186160529,9712391319942400,2685817593368889551,

%U 809491207939940828160,280106645752842329055193,99175751774345673351479296,36958774352800067430488661375,15213494922728791702295969038336

%N Number of pairs of endofunctions f, g on [n] satisfying f(g^9(i)) = f(i) for all i in [n].

%H Alois P. Heinz, <a href="/A245918/b245918.txt">Table of n, a(n) for n = 0..150</a>

%p with(combinat):

%p b:= proc(n, i) option remember; unapply(`if`(n=0 or i=1, x^n,

%p expand(add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*

%p x^(igcd(i, 9)*j)*b(n-i*j, i-1)(x), j=0..n/i))), x)

%p end:

%p a:= n-> add(binomial(n-1, j-1)*n^(n-j)*b(j$2)(n), j=0..n):

%p seq(a(n), n=0..20);

%Y Column k=9 of A245910.

%K nonn

%O 0,3

%A _Alois P. Heinz_, Aug 06 2014