login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Genus of the complete intersection of two hypersurfaces in P^3.
1

%I #38 Sep 12 2020 10:30:56

%S 0,1,3,4,6,9,10,15,16,19,21,25,28,31,33,36,45,46,49,51,55,64,66,73,76,

%T 78,81,85,91,99,100,105,106,109,120,121,129,136,141,144,145,153,163,

%U 166,169,171,181,190,196,199,201,210,225,226,231,235,241,243

%N Genus of the complete intersection of two hypersurfaces in P^3.

%C Integers that can be written as d*e*(d+e-4)/2+1 for positive integers d and e.

%H Jean-François Alcover, <a href="/A245810/b245810.txt">Table of n, a(n) for n = 1..10000</a>

%p filter:= proc(n)

%p local m,S,Q;

%p m:= 2*(n-1);

%p S:= numtheory:-divisors(m);

%p Q:= map(d ->(4*d-m+sqrt(4*d^3 + 16*d^2 - 8*d*m + m^2))/(2*d), S);

%p evalb(select(type,Q,posint) <> {})

%p end proc:

%p filter(0):= true:

%p filter(1):= true:

%p select(filter, [$0..1000]); # _Robert Israel_, Aug 24 2014

%t Module[{gmax = 300, g}, Reap[Do[g = d e (d + e - 4)/2 + 1; If[IntegerQ[g], Sow[g]], {d, Ceiling[(3 + Sqrt[1 + 8 gmax])/2]}, {e, d}]][[2, 1]] // Select[#, # <= gmax &]& // Union] (* _Jean-François Alcover_, Sep 12 2020 *)

%K nonn

%O 1,3

%A _Richard Shadrach_, Aug 22 2014

%E b-file corrected by _Jean-François Alcover_, Sep 12 2020