login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers n such that k(n) = (n/tau(n) + sigma(n)/n) is an integer.
3

%I #11 Sep 08 2022 08:46:09

%S 1,672,4680,30240,23569920,45532800,275890944,14182439040,

%T 153003540480,403031236608,518666803200

%N Numbers n such that k(n) = (n/tau(n) + sigma(n)/n) is an integer.

%C Numbers n such that A245784(n) / A245785(n) = (n / A000005(n) + A000203(n) / n) is an integer.

%C Sequence of numbers k(n): 2, 31, 101, 319, 73660, 118579, …

%C Conjecture: Subsequence of A216793.

%C Refactorable multiply-perfect numbers (A245782) are members of this sequence.

%C a(12) > 10^13. - _Giovanni Resta_, Jul 13 2015

%F A245785(a(n)) = 1.

%e 672 is in sequence because 672/tau(672) + sigma(672)/672 = 672/24 + 2016/672 = 31 (integer).

%o (Magma) [n: n in [1..100000] | (Denominator((n/(#[d: d in Divisors(n)])) + (SumOfDivisors(n)/n)) eq 1)]

%o (PARI) for(n=1, 10^8, s=n/numdiv(n); t=sigma(n)/n; if(floor(s+t)==s+t, print1(n, ", "))) \\ _Derek Orr_, Aug 15 2014

%Y Cf. A000005, A000203, A245784, A245785, A245782.

%K nonn

%O 1,2

%A _Jaroslav Krizek_, Aug 15 2014

%E a(7)-a(11) from _Giovanni Resta_, Jul 13 2015