%I #55 Jan 09 2016 00:29:54
%S 1,8,16,27,32,64,64,81,125,128,216,243,256,256,343,512,512,625,729,
%T 729,1000,1024,1024,1296,1331,1728,2048,2187,2197,2401,2744,3125,3375,
%U 4096,4096,4096,4096,4913,5832,6561,6561,6859,7776,8000,8192,9261
%N Sorted imperfect powers b^p with b > 0, p > 2, with multiplicity.
%C No multiple terms for b=1.
%C This sequence strictly follows requirements of the Beal conjecture.
%C Less than 550 of these powers satisfy 196 Beal's conjecture equations.
%H Anatoly E. Voevudko, <a href="/A245713/b245713.txt">Table of n, a(n) for n = 1..11539</a>
%H American Mathematical Society, <a href="http://www.ams.org/profession/prizes-awards/ams-supported/beal-prize">Beal Prize</a>
%H Alf van der Poorten, <a href="/A023057/a023057.txt">Remarks on the sequence of 'perfect' numbers</a>
%H Anatoly E. Voevudko, <a href="/A245713/a245713.txt">Description of all powers in b245713</a>
%H Eric W. Weisstein, World of Mathematics, <a href="http://mathworld.wolfram.com/PerfectPower.html">Perfect Power</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Beal%27s_conjecture">Beal's conjecture</a>
%p N:= 10^5: # to get all terms <= N
%p L:= [1, seq(seq(b^p, p=3..floor(log[b](N))),b=2..floor(N^(1/3)))]:
%p sort(L); # _Robert Israel_, Nov 09 2015
%t mx = 10000; Join[{1}, Sort@ Flatten@ Table[b^p, {b, 2, Sqrt@ mx}, {p, 3, Log[b, mx]}]] (* _Robert G. Wilson v_, Nov 09 2015 *)
%o (PARI) A245713(lim)={my(L=List(1),lim2=logint(lim,2));for(p=3,lim2, for(b=2,sqrtnint(lim,p),listput(L, b^p);));listsort(L); print(L);} \\ _Anatoly E. Voevudko_, Sep 21 2015
%Y Cf. A001597, A023057, A072103, A076467.
%K nonn,easy
%O 1,2
%A _Anatoly E. Voevudko_, Jul 30 2014