login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A245672
Decimal expansion of k_3 = 3/(2*Pi*m_3), a constant associated with the asymptotic expansion of the probability that a three-dimensional random walk reaches a given point for the first time, where m_3 is A086231 (Watson's integral).
1
3, 1, 4, 8, 7, 0, 2, 3, 1, 3, 5, 9, 6, 2, 0, 1, 7, 8, 0, 7, 5, 1, 7, 3, 9, 1, 9, 4, 1, 8, 8, 0, 6, 8, 7, 7, 0, 5, 8, 9, 6, 3, 4, 2, 4, 5, 9, 0, 1, 4, 0, 5, 5, 1, 0, 8, 4, 0, 8, 0, 3, 0, 7, 2, 7, 3, 1, 0, 8, 0, 5, 9, 4, 7, 6, 1, 4, 6, 7, 3, 1, 9, 7, 9, 7, 5, 2, 0, 2, 4, 1, 2, 0, 2, 0, 4, 9, 6, 4, 0, 4, 2, 3, 4, 4
OFFSET
0,1
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.9 Polya's Random Walk Constants, p. 324.
LINKS
Eric Weisstein's MathWorld, Polya's Random Walk Constants
FORMULA
k_3 = 8*sqrt(6)*Pi^2/(Gamma(5/24)*Gamma(7/24)*Gamma(11/24)), where 'Gamma' is the Euler gamma function.
Asymptotic probability ~ k_3 / ||l||, where the norm ||l|| of the position of the lattice point l tends to infinity.
EXAMPLE
0.314870231359620178075173919418806877058963424590140551084080307273108...
MATHEMATICA
k3 = 8*Sqrt[6]*Pi^2/(Gamma[1/24]*Gamma[5/24]*Gamma[7/24]*Gamma[11/24]); RealDigits[k3, 10, 105] // First
CROSSREFS
Cf. A086231.
Sequence in context: A205878 A329130 A057049 * A303029 A050059 A025121
KEYWORD
nonn,cons,easy,walk
AUTHOR
STATUS
approved