login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of permutations of length n with longest increasing subsequence of length 9.
2

%I #7 Jul 28 2014 18:17:45

%S 1,81,3961,153341,5213287,164060352,4927007100,143938455225,

%T 4142847526101,118504614869214,3389618010035458,97376389179852540,

%U 2818543211543628620,82388635477750176388,2436180769576352799396,72958306889459609898731,2214789502139053994814716

%N Number of permutations of length n with longest increasing subsequence of length 9.

%H Alois P. Heinz, <a href="/A245665/b245665.txt">Table of n, a(n) for n = 9..60</a>

%p h:= proc(l) local n; n:= nops(l); add(i, i=l)! /mul(mul(1+l[i]-j

%p +add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n) end:

%p g:= (n, i, l)-> `if`(n=0 or i=1, h([l[], 1$n])^2, `if`(i<1, 0,

%p add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i))):

%p a:= n-> g(n-9, min(n-9, 9), [9]):

%p seq(a(n), n=9..30);

%Y Column k=9 of A047874.

%K nonn

%O 9,2

%A _Alois P. Heinz_, Jul 28 2014