The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A245624 Sequence of distinct least positive numbers such that the average of the first n terms is a cube. 2
 1, 15, 8, 84, 27, 249, 64, 552, 125, 1035, 216, 1740, 343, 2709, 512, 3984, 729, 5607, 1000, 7620, 1331, 10065, 1728, 12984, 2197, 16419, 2744, 20412, 3375, 25005, 4096, 30240, 4913, 36159, 5832, 42804, 6859, 50217, 8000, 58440, 9261, 67515, 10648, 77484, 12167, 88389, 13824 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Colin Barker's formulas are true if the curve x^3 = 7*y^3 + 6*y^2+2*y has no positive integer solutions.  This is a curve of genus 1 (equivalent to the elliptic curve s^3 + t^2 + 20), and does have some rational points, but no positive integer solutions at least for y <= 10^21. - Robert Israel, May 17 2015 Now confirmed: that curve has no positive integer solutions. See Math.StackExchange link. - Robert Israel, May 18 2015 LINKS Colin Barker, Table of n, a(n) for n = 1..1000 R. Israel, W. Jagy and Á. Lozano-Robledo, Integer Solutions of x^3 = 7 y^3 + 6 y^2 + 2 y, Math.StackExchange question (2015). Index entries for linear recurrences with constant coefficients, signature (0,4,0,-6,0,4,0,-1). FORMULA a(2*n-1) = n^3, a(2*n) = 7*n^3+6*n^2+2*n. a(n) = 4*a(n-2)-6*a(n-4)+4*a(n-6)-a(n-8) for n>8. - Colin Barker, Nov 05 2014 G.f.: x*(3*x^5+x^4+24*x^3+4*x^2+15*x+1) / ((x-1)^4*(x+1)^4). - Colin Barker, Nov 05 2014 MAPLE seq(op([k^3, 7*k^3+6*k^2+2*k]), k=1..100); # Robert Israel, May 18 2015 MATHEMATICA Flatten[Table[{n^3, 7 n^3 + 6 n^2 + 2 n}, {n, 25}]] (* Vincenzo Librandi, May 19 2015 *) PROG (PARI) v=[]; n=1; while(n<10^5, num=(vecsum(v)+n); if(num%(#v+1)==0&&vecsearch(vecsort(v), n)==0, for(i=1, n+2, if(i^3>(num/(#v+1)), break); if(i^3==(num/(#v+1)), print1(n, ", "); v=concat(v, n); n=1; break))); n++) (MAGMA) &cat[[k^3, 7*k^3+6*k^2+2*k]: k in [1..25]]; // Vincenzo Librandi, May 19 2015 (PARI) Vec(x*(3*x^5+x^4+24*x^3+4*x^2+15*x+1)/((x-1)^4*(x+1)^4) + O(x^100)) \\ Colin Barker, May 19 2015 CROSSREFS Cf. A085047, A245621. Sequence in context: A090636 A126892 A195035 * A349478 A182165 A139725 Adjacent sequences:  A245621 A245622 A245623 * A245625 A245626 A245627 KEYWORD nonn,easy AUTHOR Derek Orr, Nov 05 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 21 05:37 EDT 2022. Contains 353889 sequences. (Running on oeis4.)