login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Product_{i in row n of A245562} Fibonacci(i+2).
3

%I #39 Feb 04 2022 16:31:15

%S 1,2,2,3,2,4,3,5,2,4,4,6,3,6,5,8,2,4,4,6,4,8,6,10,3,6,6,9,5,10,8,13,2,

%T 4,4,6,4,8,6,10,4,8,8,12,6,12,10,16,3,6,6,9,6,12,9,15,5,10,10,15,8,16,

%U 13,21,2,4,4,6,4,8,6,10,4,8,8,12,6,12,10,16,4,8,8,12,8,16,12,20,6,12,12,18

%N a(n) = Product_{i in row n of A245562} Fibonacci(i+2).

%C This is the Run Length Transform of S(n) = Fibonacci(n+2).

%C The Run Length Transform of a sequence {S(n), n>=0} is defined to be the sequence {T(n), n>=0} given by T(n) = Product_i S(i), where i runs through the lengths of runs of 1's in the binary expansion of n. E.g. 19 is 10011 in binary, which has two runs of 1's, of lengths 1 and 2. So T(19) = S(1)*S(2). T(0)=1 (the empty product).

%C a(n) = Sum_{k=0..n} ({binomial(3k,k)*binomial(n,k)} mod 2). - _Chai Wah Wu_, Oct 19 2016

%H Alois P. Heinz, <a href="/A245564/b245564.txt">Table of n, a(n) for n = 0..8191</a>

%H Chai Wah Wu, <a href="https://arxiv.org/abs/1610.06166">Sums of products of binomial coefficients mod 2 and run length transforms of sequences</a>, arXiv:1610.06166 [math.CO], 2016.

%p with(combinat); ans:=[];

%p for n from 0 to 100 do lis:=[]; t1:=convert(n,base,2); L1:=nops(t1); out1:=1; c:=0;

%p for i from 1 to L1 do

%p if out1 = 1 and t1[i] = 1 then out1:=0; c:=c+1;

%p elif out1 = 0 and t1[i] = 1 then c:=c+1;

%p elif out1 = 1 and t1[i] = 0 then c:=c;

%p elif out1 = 0 and t1[i] = 0 then lis:=[c,op(lis)]; out1:=1; c:=0;

%p fi;

%p if i = L1 and c>0 then lis:=[c,op(lis)]; fi;

%p od:

%p a:=mul(fibonacci(i+2), i in lis);

%p ans:=[op(ans),a];

%p od:

%p ans;

%t a[n_] := Sum[Mod[Binomial[3k, k] Binomial[n, k], 2], {k, 0, n}];

%t a /@ Range[0, 100] (* _Jean-François Alcover_, Feb 29 2020, after _Chai Wah Wu_ *)

%o (PARI) a(n)=my(s=1,k); while(n, n>>=valuation(n,2); k=valuation(n+1,2); s*=fibonacci(k+2); n>>=k); s \\ _Charles R Greathouse IV_, Oct 21 2016

%o (Python)

%o # use RLT function from A278159

%o from sympy import fibonacci

%o def A245564(n): return RLT(n,lambda m: fibonacci(m+2)) # _Chai Wah Wu_, Feb 04 2022

%Y Cf. A245562, A000045, A001045, A071053, A245565, A246028.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_, Aug 10 2014; revised Sep 05 2014