login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Table read by rows: n-th row contains the factors which occur when constructing R. L. Graham's sequence A006255, such that the number of factors and also the product is minimal.
9

%I #35 May 02 2017 22:17:17

%S 1,2,3,6,3,6,8,4,5,8,10,6,8,12,7,8,14,8,10,12,15,9,10,12,15,18,11,18,

%T 22,12,15,20,13,18,26,14,15,18,20,21,15,18,20,24,16,17,18,34,18,24,27,

%U 19,32,38,20,24,30,21,27,28,22,24,33,23,32,46,24,27,32

%N Table read by rows: n-th row contains the factors which occur when constructing R. L. Graham's sequence A006255, such that the number of factors and also the product is minimal.

%C A066400(n) = length of n-th row.

%C A006255(n) = T(n,A066400(n)), last term in n-th row.

%C A245530(n) = A066401(n)^2 = product of n-th row.

%C For n > 2: A245508(n) = T(A000040(n),2).

%C T(n,k) denote b_k in the definition given in A006255.

%C From _David A. Corneth_, Oct 22 2016 and Oct 25 2016: (Start)

%C Frequency of n in this sequence: 1, 1, 2, 1, 1, 3, 1, 5, 1, 3, 1, 4, 1, 2, ... See A277606.

%C Primes and squares occur once in this sequence except for 3 which occurs twice.

%C In the first 10000 rows, 9522 occurs most often and appears 60 times. 6498 is a close second with 59 occurrences.

%C (End)

%D R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd. ed., Problem 4.39, pages 147, 616, 533.

%H Peter Kagey, <a href="/A245499/b245499.txt">Table of n, a(n) for n = 1..44055</a> (Derived from David A. Corneth's unflattened file)

%H David A. Corneth, <a href="/A245499/a245499_1.gp.txt">First 10000 rows unflattened</a>

%e . n | Row(n) | A066400(n) | A245530(n) | A066401(n)

%e . -----+------------------------+------------+------------+-----------

%e . 1 | [1] | 1 | 1 | 1

%e . 2 | [2, 3, 6] | 3 | 36 | 6

%e . 3 | [3, 6, 8] | 3 | 144 | 12

%e . 4 | [4] | 1 | 4 | 2

%e . 5 | [5, 8, 10] | 3 | 400 | 20

%e . 6 | [6, 8, 12] | 3 | 576 | 24

%e . 7 | [7, 8, 14] | 3 | 784 | 28

%e . 8 | [8, 10, 12, 15] | 4 | 14400 | 120

%e . 9 | [9] | 1 | 9 | 3

%e . 10 | [10, 12, 15, 18] | 4 | 32400 | 180

%e . 11 | [11, 18, 22] | 3 | 4356 | 66

%e . 12 | [12, 15, 20] | 3 | 3600 | 60

%e . 13 | [13, 18, 26] | 3 | 6084 | 78

%e . 14 | [14, 15, 18, 20, 21] | 5 | 1587600 | 1260

%e . 15 | [15, 18, 20, 24] | 4 | 129600 | 360

%e . 16 | [16] | 1 | 16 | 4

%e . 17 | [17, 18, 34] | 3 | 10404 | 102

%e . 18 | [18, 24, 27] | 3 | 11664 | 108

%e . 19 | [19, 32, 38] | 3 | 23104 | 152

%e . 20 | [20, 24, 30] | 3 | 14400 | 120

%e . 21 | [21, 27, 28] | 3 | 15876 | 126

%e . 22 | [22, 24, 33] | 3 | 17424 | 132

%e . 23 | [23, 32, 46] | 3 | 33856 | 184

%e . 24 | [24, 27, 32] | 3 | 20736 | 144

%e . 25 | [25] | 1 | 25 | 5 .

%t Table[k = 0; While[Length@ # == 0 &@ Set[f, Select[Rest@ Subsets@ Range@ k, IntegerQ@ Sqrt[n (Times @@ # &[n + #])] &]], k++]; If[IntegerQ@ Sqrt@ n, k = {n}, k = n + Prepend[First@ f, 0]]; k, {n, 22}] (* _Michael De Vlieger_, Oct 26 2016 *)

%Y Cf. A006255, A006530, A007913, A010051, A010052, A020639, A049084, A066400 (row lengths), A066401, A089229, A151800, A245508, A245530 (row products), A277606.

%K nonn,tabf

%O 1,2

%A _Reinhard Zumkeller_, Jul 25 2014

%E Following a suggestion of _Peter Kagey_, definition clarified by _Reinhard Zumkeller_, Nov 28 2014. Also removed erroneous program and b-file.