Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Jul 25 2014 05:26:19
%S 1,1,6,45,508,7225,126306,2606065,62075952,1675774089,50565938050,
%T 1686510607111,61609858744248,2446470026497705,104922088624078194,
%U 4833250468667819325,238004208840601580416,12476420334546637657489,693675026024580055139778
%N a(n) = n! * [x^n] (exp(x)+x^2/2!)^n.
%C In general, if a(n) = n! * [x^n] (exp(x) + x^k/k!)^n, k>=1, then limit n-> infinity (a(n)/n!)^(1/n) = ((1-k*r)/(1-r))^(k-1) / (r*k!), where r is the root of the equation exp((k*r-1)/(1-r)) = r*k! * (1-r)^(k-1) / (1-k*r)^k.
%H Vincenzo Librandi, <a href="/A245493/b245493.txt">Table of n, a(n) for n = 0..200</a>
%F a(n) ~ c * d^n * n^n / exp(n), where d = (1-2*r)/(2*r*(1-r)) = 3.177499696443893762475339445134038..., where r = 0.13317988718414524112... is the root of the equation exp((2*r-1)/(1-r)) = 2*r*(1-r)/(1-2*r)^2, and c = 1.061620103934913384222610538939... .
%t Table[n!*SeriesCoefficient[(E^x + x^2/2)^n, {x, 0, n}], {n, 0, 20}]
%t With[{k=2}, Flatten[{1, Table[Sum[Binomial[n, j]*Binomial[n, k*j]*(n-j)^(n-k*j)*(k*j)!/(k!)^j, {j, 0, n/k}], {n, 1, 20}]}]]
%Y Cf. A245406, A245405, A245496.
%K nonn,easy
%O 0,3
%A _Vaclav Kotesovec_, Jul 24 2014