login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245489
a(n) = (1^n + (-2)^n + 4^n)/3.
2
1, 1, 7, 19, 91, 331, 1387, 5419, 21931, 87211, 349867, 1397419, 5593771, 22366891, 89483947, 357903019, 1431677611, 5726579371, 22906579627, 91625794219, 366504225451, 1466014804651, 5864063412907, 23456245263019, 93824997829291, 375299957762731
OFFSET
0,3
FORMULA
G.f.: (1 - 2*x - 2*x^2) / ((1 - x) * (1 + 2*x) * (1 - 4*x)).
0 = 8*a(n) - 6*a(n+1) - 3*a(n+2) + a(n+3) for all n in Z.
a(2*n) = A018240(4*n + 3). a(2*n + 1) = A129362(4*n).
a(n) = A001045(3*n)/(3*A001045(n)) for n >= 1. - Peter Bala, Apr 06 2015
E.g.f.: (exp(x) + exp(4*x) + exp(-2*x))/3. - G. C. Greubel, Sep 21 2019
EXAMPLE
G.f. = 1 + x + 7*x^2 + 19*x^3 + 91*x^4 + 331*x^5 + 1387*x^6 + 5419*x^7 + ...
MAPLE
seq((1 +(-2)^n +4^n)/3, n=0..30); # G. C. Greubel, Sep 21 2019
MATHEMATICA
CoefficientList[Series[(1-2x-2x^2)/((1-x)(1+2x)(1-4x)), {x, 0, 40}], x] (* Vincenzo Librandi, Jul 25 2014 *)
LinearRecurrence[{3, 6, -8}, {1, 1, 7}, 30] (* Harvey P. Dale, Dec 04 2018 *)
PROG
(PARI) {a(n) = (1^n + (-2)^n + 4^n) / 3};
(PARI) {a(n) = if( n<0, 4^n, 1) * polcoeff( (1 - 2*x - 2*x^2) / ((1 - x) * (1 + 2*x) * (1 - 4*x)) + x * O(x^abs(n)), abs(n))};
(Magma) [(1^n + (-2)^n + 4^n) / 3 : n in [0..30]]; // Vincenzo Librandi, Jul 25 2014
(Sage) [(1 +(-2)^n +4^n)/3 for n in (0..30)] # G. C. Greubel, Sep 21 2019
(GAP) List([0..30], n-> (1 +(-2)^n +4^n)/3); # G. C. Greubel, Sep 21 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Jul 23 2014
STATUS
approved