Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #37 Sep 08 2022 08:46:08
%S 1,6,34,307,3433,50883,874427,17717436,405157609,10414924259,
%T 295726594871,9214021138217,312089127730471,11424774176377721,
%U 449318695089164129,18896344248070459234,846136606134407223412,40192694877626586149007,2018612350537940175272987
%N a(n) = sigma_1(1) + sigma_2(2) + sigma_3(3) + ... + sigma_n-1(n-1) + sigma_n(n).
%C Let sigma_k(n) represent the sum of the k-th powers of the divisors of n.
%C Then a(n) = Sum_{k=1..n} sigma_k(k), the partial sums of sigma_k(k) for k from 1 to n.
%C Partial sums of A023887.
%H Jens Kruse Andersen, <a href="/A245466/b245466.txt">Table of n, a(n) for n = 1..100</a>
%F a(n) = Sum_{k=1..n} sigma_k(k).
%F a(1) = 1. a(n) = a(n-1) + sigma_n(n), for n > 1. - _Jens Kruse Andersen_, Jul 29 2014
%F a(n) = n + Sum_{d=2..n} (d^(d*(floor(n/d)+1))-d^d)/(d^d-1). - _Chayim Lowen_, Aug 04 2015
%e a(1) = 1 because sigma_1(1) = sigma(1) = 1.
%e a(2) = 6: sigma_1(1) + sigma_2(2) = 1 + (1^2 + 2^2) = 6.
%e a(3) = 34: sigma_1(1) + sigma_2(2) + sigma_3(3) = 6 + (1^3 + 3^3) = 34.
%e a(4) = 307: sigma_1(1) + ... + sigma_4(4) = 34 + (1^4 + 2^4 + 4^4) = 307.
%p B:= [seq(numtheory:-sigma[n](n),n=1..100)]:
%p seq(add(B[i],i=1..n),n=1..100); # _Robert Israel_, Jul 28 2014
%t Table[Sum[DivisorSigma[k, k], {k, n}], {n, 20}]
%t Accumulate[Table[DivisorSigma[n,n],{n,20}]] (* _Harvey P. Dale_, Apr 10 2018 *)
%o (PARI)
%o a(n) = sum(i=1,n,sigma(i,i))
%o vector(50, n, a(n)) \\ _Derek Orr_, Jul 27 2014
%o (Magma) [&+[DivisorSigma(i, i): i in [1..n]]: n in [1..20]]; // _Bruno Berselli_, Jul 29 2014
%o (Magma) [n eq 1 select 1 else Self(n-1)+ DivisorSigma(n, n): n in [1..20]]; // _Vincenzo Librandi_, Aug 05 2015
%Y Cf. A000203, A001157-A001160, A013954-A013958, A023887.
%K nonn
%O 1,2
%A _Wesley Ivan Hurt_, Jul 22 2014