%I #9 Jul 22 2014 11:18:54
%S 43,547,909091,1623931,7027567,10678711,15790321,22796593,32222107,
%T 81867661,183458857,234750601,574995877,2498207293,6177695707,
%U 7095062437,9272716111,13564461457,19397579293,24344094727,50689400581,81420308971,137405657593,149289169177
%N Primes of the form n^6 - n^5 + n^4 - n^3 + n^2 - n + 1.
%C All the terms in this sequence are primes, but none are congruent to 9 mod 10.
%C All terms == 1 (mod 7). - _Robert Israel_, Jul 22 2014
%H K. D. Bajpai, <a href="/A245427/b245427.txt">Table of n, a(n) for n = 1..13520</a>
%e n = 2: n^6 - n^5 + n^4 - n^3 + n^2 - n + 1 = 43, which is prime.
%e n = 10: n^6 - n^5 + n^4 - n^3 + n^2 - n + 1 = 909091, which is prime.
%t Select[Table[n^6 - n^5 + n^4 - n^3 + n^2 - n + 1, {n, 200}], PrimeQ]
%Y Cf. A000040, A088550, A162861, A245393.
%K nonn
%O 1,1
%A _K. D. Bajpai_, Jul 21 2014