login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. satisfies: A(x) = Sum_{n>=0} x^n / ( (1+x)^(n+1) * (1 - (n+1)*x*A(x)) ).
1

%I #7 Jul 20 2014 05:20:12

%S 1,1,3,10,39,165,743,3507,17199,87126,454159,2430031,13326623,

%T 74856230,430628069,2538270783,15343363603,95233568052,607850790015,

%U 3996223189468,27105153736781,189947851239185,1376864409041417,10330672337146804,80248762443834399,645206035074873681

%N G.f. satisfies: A(x) = Sum_{n>=0} x^n / ( (1+x)^(n+1) * (1 - (n+1)*x*A(x)) ).

%C Compare g.f. to an identity for C(x) = 1 + x*C(x)^2, the Catalan function:

%C C(x) = Sum_{n>=0} n! * x^n * C(x)^n / Product_{k=1..n} (1 + k*x*C(x)).

%H Vaclav Kotesovec, <a href="/A245378/b245378.txt">Table of n, a(n) for n = 0..175</a>

%F G.f. satisfies: A(x) = Sum_{n>=0} n! * x^n * A(x)^n * (1+x)^n / Product_{k=1..n} (1 + k*x*A(x)).

%e G.f.: A(x) = 1 + x + 3*x^2 + 10*x^3 + 39*x^4 + 165*x^5 + 743*x^6 +...

%e where we have the following identity:

%e A(x) = 1/((1+x)*(1-x*A(x))) + x/((1+x)^2*(1-2*x*A(x))) + x^2/((1+x)^3*(1-3*x*A(x)))+ x^3/((1+x)^4*(1-4*x*A(x)))+ x^4/((1+x)^5*(1-5*x*A(x))) + x^5/((1+x)^6*(1-6*x*A(x))) +...

%e is equal to

%e A(x) = 1 + x*A(x)*(1+x)/(1+x*A(x)) + 2!*x^2*A(x)^2*(1+x)^2/((1+x*A(x))*(1+2*x*A(x))) + 3!*x^3*A(x)^3*(1+x)^3/((1+x*A(x))*(1+2*x*A(x))*(1+3*x*A(x))) + 4!*x^4*A(x)^4*(1+x)^4/((1+x*A(x))*(1+2*x*A(x))*(1+3*x*A(x))*(1+4*x*A(x))) + 5!*x^5*A(x)^5*(1+x)^5/((1+x*A(x))*(1+2*x*A(x))*(1+3*x*A(x))*(1+4*x*A(x))*(1+5*x*A(x))) +...

%o (PARI) {a(n)=local(A=1+x);for(i=1,n,A=sum(m=0, n, x^m/((1+x)^(m+1)*(1 - (m+1)*x*A +x*O(x^n)))));polcoeff(A, n)}

%o for(n=0, 30, print1(a(n), ", "))

%o (PARI) {a(n)=local(A=1+x);for(i=1,n,A=sum(m=0, n, m!*x^m*A^m*(1+x)^m/prod(k=1, m, 1+k*x*A +x*O(x^n))));polcoeff(A, n)}

%o for(n=0, 30, print1(a(n), ", "))

%Y Cf. A229046, A245373, A245374, A245375, A245376.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Jul 19 2014