%I #11 Mar 16 2020 16:39:43
%S 0,1,2,3,4,5,6,7,8,9,3,4,5,6,7,8,9,10,11,12,6,7,8,9,10,11,12,13,14,15,
%T 9,10,11,12,13,14,15,16,17,18,5,6,7,8,9,10,11,12,13,14,8,9,10,11,12,
%U 13,14,15,16,17,11,12,13,14,15,16,17,18,19,20,7,8,9
%N Sum of digits of n in fractional base 10/3.
%C The base 10/3 expansion is unique, and thus the sum of digits function is well-defined.
%e In base 10/3 the number 11 is represented by 31 and so a(11) = 3 + 1 = 4.
%o (Sage) # uses [basepqsum from A245355]
%o [basepqsum(10,3,y) for y in [0..200]]
%Y Cf. A024658, A007953.
%K nonn,base
%O 0,3
%A _James Van Alstine_, Jul 18 2014