login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. A(x) satisfies: [x^(n+1)] A(x)^n = n*([x^(n-1)] A(x)^n) for n>=1.
3

%I #15 Jul 25 2014 08:06:58

%S 1,1,1,1,2,4,12,34,120,412,1608,6244,26288,111448,499256,2265288,

%T 10701896,51339768,254175048,1278947304,6604214760,34662182904,

%U 186002333640,1014140252376,5638617162312,31837193871480,182962292354376,1067120997002680,6325487157903240,38030207563538680

%N G.f. A(x) satisfies: [x^(n+1)] A(x)^n = n*([x^(n-1)] A(x)^n) for n>=1.

%C The g.f. G(x) of the closely related sequence A245311 satisfies:

%C (1) G(x) = 1 + x*G(x) + x^2*G(x)^2 + x^3*G(x)*G'(x).

%C (2) G(x)^2 = Dx(G(x)) / (1 + x^2*Dx^2(G(x))), where Dx(F(x)) = d/dx x*F(x).

%H Paul D. Hanna, <a href="/A245310/b245310.txt">Table of n, a(n) for n = 0..500</a>

%F G.f. satisfies:

%F (1) A(x) = 1 + x + x^2 + x^3*A'(x)/(A(x) - x*A'(x)).

%F (2) A(x) = G(x/A(x)) where G(x) = A(x*G(x)) is the g.f. of A245311.

%F (3) A(x) = x / Series_Reversion(x*G(x)) where G(x) is the g.f. of A245311.

%e G.f.: A(x) = 1 + x + x^2 + x^3 + 2*x^4 + 4*x^5 + 12*x^6 + 34*x^7 +...

%e The table of coefficients of x^k in A(x)^n begin:

%e n=1: [1, 1, 1, 1, 2, 4, 12, 34, 120, 412, 1608, ...];

%e n=2: [1, 2, 3, 4, 7, 14, 37, 104, 344, 1172, 4412, ...];

%e n=3: [1, 3, 6, 10, 18, 36, 88, 240, 753, 2515, 9174, ...];

%e n=4: [1, 4, 10, 20, 39, 80, 188, 496, 1487, 4836, 17122, ...];

%e n=5: [1, 5, 15, 35, 75, 161, 375, 965, 2785, 8795, 30241, ...];

%e n=6: [1, 6, 21, 56, 132, 300, 708, 1800, 5046, 15484, 51738, ...];

%e n=7: [1, 7, 28, 84, 217, 525, 1274, 3242, 8918, 26684, 86772, ...];

%e n=8: [1, 8, 36, 120, 338, 872, 2196, 5656, 15423, 45248, 143576, ...];

%e n=9: [1, 9, 45, 165, 504, 1386, 3642, 9576, 26127, 75655, 235143, ...]; ...

%e from which we can illustrate [x^(n+1)] A(x)^n = n*([x^(n-1)] A(x)^n):

%e n=1: [x^2] A(x) = 1 = 1*([x^0] A(x)) = 1*1 ;

%e n=2: [x^3] A(x)^2 = 4 = 2*([x^1] A(x)^2) = 2*2 ;

%e n=3: [x^4] A(x)^3 = 18 = 3*([x^2] A(x)^3) = 3*6 ;

%e n=4: [x^5] A(x)^4 = 80 = 4*([x^3] A(x)^4) = 4*20 ;

%e n=5: [x^6] A(x)^5 = 375 = 5*([x^4] A(x)^5) = 5*75 ;

%e n=6: [x^7] A(x)^6 = 1800 = 6*([x^5] A(x)^6) = 6*300 ;

%e n=7: [x^8] A(x)^7 = 8918 = 7*([x^6] A(x)^7) = 7*1274 ;

%e n=8: [x^9] A(x)^8 = 45248 = 8*([x^7] A(x)^8) = 8*5656 ;

%e n=9: [x^10] A(x)^9 = 235143 = 9*([x^8] A(x)^9) = 9*26127 ; ...

%e describing terms that lie along diagonals in the above table.

%e From the main diagonal in the above table, we may derive A245311:

%e [1/1, 2/2, 6/3, 20/4, 75/5, 300/6, 1274/7, 5656/8, 26127/9, ...]

%e = [1, 1, 2, 5, 15, 50, 182, 707, 2903, 12479, ...].

%o (PARI) /* From A(x) = 1+x+x^2 + x^3*A'(x)/(A(x) - x*A'(x)): */

%o {a(n)=local(A=1+x); for(i=1, n, A = 1+x+x^2 + x^3*A'/(A-x*A' +x*O(x^n))); polcoeff(A, n)}

%o for(n=0, 30, print1(a(n), ", "))

%o (PARI) /* From [x^(n-1)] A(x)^n = n*([x^(n+1)] A(x)^n): */

%o {a(n)=local(A=1+x+x^2);for(m=2,n,A=A-x^(m+1)*(polcoeff(A^m+O(x^(m+2)),m+1)/m - polcoeff(A^m+O(x^m),m-1))+O(x^(n+2)));polcoeff(A,n)}

%o for(n=0,30,print1(a(n),", "))

%o (PARI) /* From the g.f. of A245311: */

%o {a(n)=local(G=1+x); for(i=1, n, G = (1 + x^2*G^2 + x^3*G*G')/(1-x +x*O(x^n)));

%o polcoeff(x/serreverse(x*G +x^2*O(x^n)), n)}

%o for(n=0, 30, print1(a(n), ", "))

%Y Cf. A245311, A245312.

%K nonn

%O 0,5

%A _Paul D. Hanna_, Jul 17 2014