login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of the Landau-Kolmogorov constant C(5,3) for derivatives in the case L_infinity(infinity, infinity).
0

%I #5 Jul 17 2014 22:10:12

%S 1,1,1,9,4,2,3,7,3,1,7,3,5,1,0,7,6,1,1,6,2,9,7,1,1,0,8,2,0,8,1,2,6,1,

%T 0,4,1,2,4,9,9,8,5,5,6,7,0,5,8,6,0,7,0,8,6,5,2,0,9,8,2,7,9,9,1,3,1,5,

%U 4,2,2,9,2,2,9,6,9,0,4,5,1,5,2,5,2,6,2,8,6,5,9,6,1,3,0,8,5,2,2,9,2,9,5,2

%N Decimal expansion of the Landau-Kolmogorov constant C(5,3) for derivatives in the case L_infinity(infinity, infinity).

%C See A245198.

%D Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 3.3 Landau-Kolmogorov constants, p. 213.

%H Eric Weisstein's MathWorld, <a href="http://mathworld.wolfram.com/Landau-KolmogorovConstants.html">Landau-Kolmogorov Constants</a>

%H Eric Weisstein's MathWorld, <a href="http://mathworld.wolfram.com/FavardConstants.html">Favard Constants</a>

%F C(n,k) = a(n-k)*a(n)^(-1+k/n), where a(n) = (4/Pi)*sum_{j=0..infinity}((-1)^j/(2j+1))^(n+1) or a(n) = 4*Pi^n*f(n+1), f(n) being the n-th Favard constant A050970(n)/A050971(n).

%F C(5,3) = (1/2)*(15/2)^(2/5).

%e 1.11942373173510761162971108208126104124998556705860708652098279913...

%t a[n_] := (4/Pi)*Sum[((-1)^j/(2*j+1))^(n+1), {j, 0, Infinity}]; c[n_, k_] := a[n-k]*a[n]^(-1+k/n); RealDigits[c[5,3], 10, 104] // First

%Y Cf. A050970, A050971, A244091, A245198.

%K nonn,cons,easy

%O 1,4

%A _Jean-François Alcover_, Jul 17 2014