This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A245262 Decimal expansion of Dawson's integral at the inflection point. 3
 4, 2, 7, 6, 8, 6, 6, 1, 6, 0, 1, 7, 9, 2, 8, 7, 9, 7, 4, 0, 6, 7, 5, 5, 6, 4, 2, 1, 1, 2, 6, 9, 5, 1, 9, 1, 9, 3, 6, 2, 4, 5, 5, 3, 4, 5, 2, 7, 8, 1, 9, 5, 8, 8, 7, 6, 3, 6, 0, 6, 0, 9, 7, 1, 9, 0, 3, 5, 2, 0, 5, 5, 9, 0, 8, 8, 3, 4, 0, 0, 3, 6, 9, 6, 4, 3, 9, 6, 9, 8, 3, 4, 2, 8, 4, 5, 8, 8, 9, 3, 4, 9, 1, 6 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 REFERENCES Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 8.9 Hyperbolic volume constants, p. 512. LINKS Stanislav Sykora, Table of n, a(n) for n = 0..2000 Eric Weisstein's MathWorld, Dawson's Integral Wikipedia, Dawson function FORMULA Equals xinfl/(2*xinfl^2-1), xinfl = A133843. - Stanislav Sykora, Sep 17 2014 EXAMPLE 0.427686616017928797406755642112695191936245534527819588763606097190352... MATHEMATICA digits = 104; DawsonF[x_] := Sqrt[Pi]*Erfi[x]/(2*Exp[x^2]); xi = x /. FindRoot[DawsonF''[x], {x, 3/2}, WorkingPrecision -> digits + 10]; RealDigits[DawsonF[xi], 10, digits] // First PROG (PARI) Erfi(z) = -I*(1.0-erfc(I*z)); Dawson(z) = 0.5*sqrt(Pi)*exp(-z*z)*Erfi(z); \\ same as F(x)=D_+(x) D2Dawson(z) = -2.0*(z + (1.0-2.0*z*z)*Dawson(z)); \\ 2nd derivative xinfl = solve(z=1.0, 2.0, real(D2Dawson(z))); x = Dawson(xinfl) \\ Stanislav Sykora, Sep 17 2014 CROSSREFS Cf. A133841, A133842, A133843, A247445. Sequence in context: A307869 A016695 A125271 * A092314 A237750 A249652 Adjacent sequences:  A245259 A245260 A245261 * A245263 A245264 A245265 KEYWORD nonn,cons AUTHOR Jean-François Alcover, Jul 15 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 10:15 EDT 2019. Contains 328026 sequences. (Running on oeis4.)