Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Dec 18 2024 09:27:33
%S 1,2,2,8,8,8,64,64,64,64,1024,1024,1024,1024,1024,32768,32768,32768,
%T 32768,32768,32768,2097152,2097152,2097152,2097152,2097152,2097152,
%U 2097152,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456
%N Repeat 2^(n*(n+1)/2) n+1 times.
%C For a(n), the successive exponents of 2 are 0, 1, 1, 3, 3, 3,... = A057944(n).
%F a(n) = 2^n/A059268(n).
%F T(n, k) = 2^(n*(n+1)/2), 0 <= k <= n. - _Michel Marcus_, Jul 17 2014
%e n+1 times repeated 2^(n*(n+1)/2)= 1, 2, 8, 64, 1024,... = A139685(n).
%e By the formula: a(0)=1/1=1, a(1)=2/1=2, a(2)=4/2=2, a(3)=8/1=8, a(4)=16/2=8,...
%e As triangle:
%e 1,
%e 2, 2,
%e 8, 8, 8,
%e 64, 64, 64, 64,
%e 1024, 1024, 1024, 1024, 1024,
%e etc.
%e Row sums: 1, 4, 24, 256,... = A095340.
%t Table[2^(n*(n+1)/2), {n, 0, 7}, {n+1}] // Flatten (* _Jean-François Alcover_, Jul 15 2014 *)
%o (Python)
%o from math import isqrt
%o def A245235(n): return 1<<((m:=isqrt(n+1<<3)-1>>1)*(m+1)>>1) # _Chai Wah Wu_, Dec 17 2024
%Y Cf. A000079, A006125, A057944, A059268, A095340, A123903, A139685.
%K nonn,tabl
%O 0,2
%A _Paul Curtz_, Jul 14 2014