%I #4 Jul 20 2014 00:13:49
%S 2,7,2,0,7,6,6,4,5,0,7,2,9,4,7,5,2,9,7,5,4,6,9,5,1,7,3,4,8,1,7,1,5,1,
%T 3,2,4,2,5,4,7,4,9,7,9,6,1,7,1,4,6,4,1,6,7,9,0,0,0,8,2,8,3,6,6,8,7,6,
%U 6,2,4,2,1,2,1,6,7,7,7,9,0,9,7,7,8,6
%N Decimal expansion of sup{f(n,1)}, where f(1,x) = x + 1 and thereafter f(n,x) = x + 1 if n is in A022838, else f(n,x) = 1/x.
%C See Comments at A245215.
%H Clark Kimberling, <a href="/A245221/b245221.txt">Table of n, a(n) for n = 1..1000</a>
%F a(n)*inf{f(n,1)} = 1.
%e c = 0.367543491184951248721260972541092540... The first 12 numbers f(n,1) comprise S(12) = {1, 2, 1/2, 3/2, 2/3, 5/3, 8/3, 3/8, 11/8, 8/11, 19/11, 11/19}; min(S(12)) = 3/8 = 0.375... and max(S(12)) = 8/3 = 2.666...
%t tmpRec = $RecursionLimit; $RecursionLimit = Infinity; u[x_] := u[x] = x + 1; d[x_] := d[x] = 1/x; r = Sqrt[3]; w = Table[Floor[k*r], {k, 2000}]; s[1] = 1; s[n_] := s[n] = If[MemberQ[w, n - 1], u[s[n - 1]], d[s[n - 1]]]; $RecursionLimit = tmpRec;
%t m = Max[N[Table[s[n], {n, 1, 4000}], 300]]
%t t = RealDigits[m] (* A245221 *)
%t (* _Peter J. C. Moses_, Jul 04 2014 *)
%Y Cf. A226080 (infinite Fibonacci tree), A245215, A245217, A245220, A245222.
%K nonn,cons,easy
%O 1,1
%A _Clark Kimberling_, Jul 14 2014