login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245177
Inefficient primes.
2
5, 13, 19, 23, 29, 31, 43, 53, 59, 61, 67, 73, 79, 83, 89, 97, 103, 131, 137, 151, 157, 163, 173, 179, 181, 191, 197, 199, 211, 229, 233, 239, 241, 281, 293, 307, 317, 347, 359, 367, 373, 379, 389, 397, 409, 419, 421, 431, 433, 443, 449
OFFSET
1,1
COMMENTS
A prime p is inefficient (see Amdeberhan - Moll) if it divides A000085(n) for some n < p.
LINKS
Tewodros Amdeberhan and Victor H. Moll, Involutions and their progenies, preprint, 2014.
Tewodros Amdeberhan and Victor H. Moll, Involutions and their progenies, arXiv:1406.2356 [math.CO], 2014.
Tewodros Amdeberhan and Victor H. Moll, Involutions and their progenies, Journal of Combinatorics, 6(4) (2015), 483-508.
MAPLE
N:= 1000: # to get all terms <= N
I1:= proc(n) option remember; I1(n-1)+(n-1)*I1(n-2) end proc:
I1(0):= 1: I1(1):= 1:
Primes:= select(isprime, {2, seq(2*i+1, i=1..floor((N-1)/2))}):
PP:= convert(Primes, `*`):
A:= {}:
for n from 1 to N-1 do
g:= igcd(I1(n), PP):
A:= A union select(`>`, numtheory:-factorset(g), n);
od:
A; # Robert Israel, Jul 20 2014
MATHEMATICA
A85 = DifferenceRoot[Function[{y, n}, {(-n-1) y[n] - y[n+1] + y[n+2] == 0, y[1] == 1, y[2] == 2}]];
inefficientQ[p_] := AnyTrue[Range[p-1], Divisible[A85[#], p]&];
Reap[For[p = 2, p < 1000, p = NextPrime[p], If[inefficientQ[p], Print[p]; Sow[p]]]][[2, 1]] (* Jean-François Alcover, Jul 28 2020 *)
CROSSREFS
Cf. A000085. See A264737 for another version.
Sequence in context: A226193 A028274 A272723 * A067463 A209663 A156111
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 19 2014
STATUS
approved