login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245043
G.f. satisfies: A(x) = (12 + A(x)^4) / (13 - 27*x).
2
1, 3, 15, 117, 1158, 12930, 154986, 1947582, 25317009, 337610451, 4592807895, 63488144109, 889226772132, 12592147132572, 179982549300948, 2593187073716460, 37622924436008574, 549178914689660106, 8059539548880228138, 118846096104074358942, 1760035125442960123992
OFFSET
0,2
FORMULA
G.f. satisfies:
(1) A(x) = 1 + Series_Reversion( (1+13*x - (1+x)^4)/(27*(1+x)) ).
(2) A(x) = Sum_{n>=0} C(4*n,n)/(3*n+1) * (12 + 27*x*A(x))^(3*n+1) / 13^(4*n+1).
(3) A(x) = G(x*A(x)) and G(x) = A(x/G(x)) where G(x) = (12+27*x + G(x)^4)/13 is the g.f. of A120595.
a(n) ~ 3^(3*n - 7/2) / (2^(7/4) * sqrt(Pi) * n^(3/2) * (13 - 8*sqrt(2))^(n - 3/2)). - Vaclav Kotesovec, Nov 27 2017
EXAMPLE
G.f.: A(x) = 1 + 3*x + 15*x^2 + 117*x^3 + 1158*x^4 + 12930*x^5 +...
Compare A(x)^4 to (13-27*x)*A(x):
A(x)^4 = 1 + 12*x + 114*x^2 + 1116*x^3 + 11895*x^4 + 136824*x^5 +...
(13-27*x)*A(x) = 13 + 12*x + 114*x^2 + 1116*x^3 + 11895*x^4 + 136824*x^5 +...
MATHEMATICA
CoefficientList[1 + InverseSeries[Series[(1+13*x - (1+x)^4)/(27*(1+x)), {x, 0, 20}], x], x] (* Vaclav Kotesovec, Nov 27 2017 *)
PROG
(PARI) {a(n)=polcoeff(1 + serreverse( (1+13*x - (1+x)^4)/(27*(1+x +x*O(x^n)))), n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n)=local(A=[1], Ax=1+x); for(i=1, n, A=concat(A, 0); Ax=Ser(A); A[#A]=Vec( ( Ax^4 - (13-27*x)*Ax )/9 )[#A]); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 10 2014
STATUS
approved