login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of n where the minimal multiplicity of any part is 10.
2

%I #7 May 01 2018 04:10:20

%S 1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,2,1,2,1,2,1,2,1,2,1,4,2,3,3,

%T 3,2,4,2,3,3,6,3,6,4,6,4,6,3,7,4,9,6,11,7,13,11,14,12,17,13,25,18,24,

%U 22,30,26,35,28,37,33,49,37,53,45,56,54,67,58

%N Number of partitions of n where the minimal multiplicity of any part is 10.

%H Joerg Arndt and Alois P. Heinz, <a href="/A245041/b245041.txt">Table of n, a(n) for n = 10..1000</a>

%p b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,

%p b(n, i-1, k) +add(b(n-i*j, i-1, k), j=max(1, k)..n/i)))

%p end:

%p a:= n-> b(n$2, 10) -b(n$2, 11):

%p seq(a(n), n=10..100);

%t b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + Sum[b[n - i*j, i - 1, k], {j, Max[1, k], n/i}]]];

%t a[n_] := b[n, n, 10] - b[n, n, 11];

%t Table[a[n], {n, 10, 100}] (* _Jean-François Alcover_, May 01 2018, translated from Maple *)

%Y Column k=10 of A243978.

%K nonn

%O 10,21

%A _Joerg Arndt_ and _Alois P. Heinz_, Jul 10 2014