login
Number of partitions of n where the minimal multiplicity of any part is 8.
2

%I #7 May 01 2018 04:10:13

%S 1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2,1,2,1,2,1,2,1,4,2,3,3,3,2,4,2,6,4,

%T 5,4,7,3,6,4,10,6,10,7,14,11,13,12,23,15,23,20,28,24,32,26,43,34,43,

%U 39,56,45,59,55,73,63,80,70,94,81,101,92,127,104,131

%N Number of partitions of n where the minimal multiplicity of any part is 8.

%H Joerg Arndt and Alois P. Heinz, <a href="/A245039/b245039.txt">Table of n, a(n) for n = 8..1000</a>

%p b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,

%p b(n, i-1, k) +add(b(n-i*j, i-1, k), j=max(1, k)..n/i)))

%p end:

%p a:= n-> b(n$2, 8) -b(n$2, 9):

%p seq(a(n), n=8..100);

%t b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + Sum[b[n - i*j, i - 1, k], {j, Max[1, k], n/i}]]];

%t a[n_] := b[n, n, 8] - b[n, n, 9];

%t Table[a[n], {n, 8, 100}] (* _Jean-François Alcover_, May 01 2018, translated from Maple *)

%Y Column k=8 of A243978.

%K nonn

%O 8,17

%A _Joerg Arndt_ and _Alois P. Heinz_, Jul 10 2014